1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
3 years ago
8

"The burning of fossil fuels and ___________ from nuclear power provide about 87% of the energy used in the world."

Physics
1 answer:
r-ruslan [8.4K]3 years ago
6 0

Explanation:

"The burning of fossil fuels , oil and natural and power from nuclear power provide about 87% of the energy used in the world.

Coal, natural gas, petroleum and nuclear power are the major energy providers to the whole world. Till date we are heavily depend on them. They provide for about 87% of the total energy used in the world.

You might be interested in
This time particle A starts from rest and accelerates to the right at 65.5 cm/s
FrozenT [24]

Answer:

t = 4 s

Explanation:

As we know that the particle A starts from Rest with constant acceleration

So the distance moved by the particle in given time "t"

d = v_i t + \frac{1}{2}at^2

d = 0 + \frac{1}{2}(65.5)t^2

d_1 = 32.75 t^2 cm

Now we know that B moves with constant speed so in the same time B will move to another distance

d_2 = 44 \times t

now we know that B is already 349 cm down the track

so if A and B will meet after time "t"

then in that case

d_1 = 349 + d_2

32.75 t^2 = 349 + 44 t

on solving above kinematics equation we have

t = 4 s

4 0
3 years ago
The rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between
erma4kov [3.2K]

Answer:

Considering first question

    Generally the coefficient of performance of the air condition  is mathematically represented as

   COP  =  \frac{T_i}{T_o - T_i}

Here T_i is the inside temperature

while  T_o is the outside temperature

What this coefficient of performance represent is the amount of heat the air condition can remove with 1 unit of electricity

So it implies that the air condition removes   \frac{T_i}{T_o - T_i} heat with 1 unit of electricity

Now from the question we are told that the rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between inside and outside. This can be mathematically represented as

         Q \ \alpha \ (T_o - T_i)

=>        Q= k (T_o - T_i)

Here k is the constant of proportionality

So  

    since  1 unit of electricity  removes   \frac{T_i}{T_o - T_i}  amount of heat

   E  unit of electricity will remove  Q= k (T_o - T_i)

So

      E =  \frac{k(T_o - T_i)}{\frac{T_i}{ T_h - T_i} }

=>   E = \frac{k}{T_i} (T_o - T_i)^2

given that  \frac{k}{T_i} is constant

    =>  E \  \alpha  \  (T_o - T_i)^2

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square of the temperature difference.

 Considering the  second question

Assuming that  T_i   =  30 ^oC

 and      T_o  =  40 ^oC

Hence  

     E = K (T_o - T_i)^2

Here K stand for a constant

So  

        E = K (40 -  30)^2

=>      E = 100K

Now if  the  T_i   =  20 ^oC

Then

       E = K (40 -  20)^2

=>      E = 400 \ K

So  from this see that the electricity require (cost of powering and operating the air conditioner)when the inside temperature is low  is  much higher than the electricity required when the inside temperature is higher

Considering the  third question

Now in the case where the  heat that enters the building is at a rate proportional to the square-root of the temperature difference between inside and outside

We have that

       Q = k (T_o - T_i )^{\frac{1}{2} }

So

       E =  \frac{k (T_o - T_i )^{\frac{1}{2} }}{\frac{T_i}{T_o - T_i} }

=>   E =  \frac{k}{T_i} * (T_o - T_i) ^{\frac{3}{2} }

Assuming \frac{k}{T_i} is a constant

Then  

     E \ \alpha \ (T_o - T_i)^{\frac{3}{2} }

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square root  of the cube of the  temperature difference.

   

4 0
3 years ago
In this reaction diagram which part represents the doffrence in energy between the reactants and the products?
Annette [7]

Answer:

The correct answer is - option C. G.

Explanation:

In this reaction diagram, there is a representation of the reaction profile. The reaction profile shows the change that takes place during a reaction in the energy of reactants or substrate and products. In this profile, activation energy looks like a hump in the line, and the minimum energy required to initiate the reaction.

The overall energy of the reaction, including or excluding activation energy depends on the nature of the reaction if it is exothermic or endothermic. and products are represented by the G which shows the difference between the energy of the reactants and products.

3 0
3 years ago
Read 2 more answers
Which statement best explains how a planet affects the orbit of a comet as the comet passes by the planet?
mezya [45]
Comets orbit the sun just like planets do. Except a comet usually has a very elongated orbit. Thanks to the laws of gravity comets obey the same laws. A comets orbit takes it very close to the sun and then far away again.
8 0
2 years ago
In addition to an all-round white light, what light(s) must power-driven vessels less than 65.6 feet (20 meters) long exhibit wh
Lemur [1.5K]
The vessel must also have red and green side lights.

The red light is placed on the port (left) side of the boat while the green light is placed on the starboard (right) side of the vehicle. The white lights are on both the masthead (front) and stern (rear) of the boat, unless the vessel is less than 39.4 feet, in which case the front and rear white light may be combined as only one white light.
7 0
3 years ago
Read 2 more answers
Other questions:
  • Transformers will not work on ______ electrical systems.
    12·2 answers
  • A 1500 kg car begins sliding down a 5.0o inclined road with a speed of 30 km/h. The engine is turned off, and the only forces ac
    7·1 answer
  • If the star Sirius emits 23 times more energy than the Sun, why does the Sun appear brighter in the sky?
    15·1 answer
  • A car traveling at 30m/s screeches to a halt, leaving 55 m long skid marks. what was the cars acceleration while braking
    12·1 answer
  • Balance these equations:
    10·1 answer
  • The experiments Galileo performed, such as rolling a ball down an inclined plane, are important because they
    13·1 answer
  • The path a projectile takes is known as the Question 1 options: vertical component trajectory horizontal component parabola Ques
    10·2 answers
  • An astronaut weighs 8.00 × 102 newtons on the sur- face of Earth. What is the weight of the astronaut 6.37 × 106 meters above th
    6·1 answer
  • On a different day the same car enters a 420-m radius horizontal curve on a rainy day when the coefficient of static friction be
    5·1 answer
  • In which reaction are the atoms of elements rearranged?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!