Answer:
f' = 2 f
Explanation:
The frequency of the pendulum that swings in simple harmonic motion is given by :

Where
l is the length of pendulum
g is the acceleration due to gravity
If the length of the thread is increased by a factor of 4, such that, l' = 4 l, let f' is the new frequency such that,



f' = 2 f
So, the new frequency of the pendulum will become 2 time of initial frequency. Hence, the correct option is (b) "2f"
Answer:
mass of the products
Explanation:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the <u>mass of the products </u>in a chemical reaction must equal the mass of the reactants.
Answer:
68.8 N 13.8°N of W
Explanation:
F₁ is 50 N 30°N of W. The terminal angle is 150°.
F₂ is 25 N 20°S of W. The terminal angle is -160°.
Graphically, you can add the vectors using head-to-tail method. Move F₂ so that the tail of the vector is at the head of F₁. The resultant vector will be from the tail of F₁ to the head of F₂.
Algebraically, find the x and y components of each vector.
F₁ₓ = 50 N cos(150°) = -43.3 N
F₁ᵧ = 50 N sin(150°) = 25 N
F₂ₓ = 25 N cos(-160°) = -23.5 N
F₂ᵧ = 25 N sin(-160°) = -8.6 N
The x and y components of the resultant vector are the sums:
Fₓ = -43.3 N + -23.5 N = -66.8 N
Fᵧ = 25 N + -8.6 N = 16.4 N
The magnitude of the resultant force is:
F = √(Fₓ² + Fᵧ²)
F = √((-66.8 N)² + (16.4 N)²)
F = 68.8 N
The direction of the resultant force is:
θ = tan⁻¹(Fᵧ / Fₓ)
θ = tan⁻¹(16.4 N / -66.8 N)
θ = 166.2°
θ = 13.8°N of W
Answer:
a) 20 seconds
b) 600 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
a) Speeder acceleration is 0 as the speed is constant

Police car

The distance they travel will be equal

Time required by the police car to catch the speeder is 20 seconds
b) The distance traveled by the police car will be 1.5×20² = 600 m