The energy required to heat a substance is related by the formula:
Q = mCpΔT ; where Q is the energy, m is the mass of the substance, Cp is the specific heat capacity and ΔT is the change in temperature.
2000 = (4)(Cp)(5)
Cp = 100 Joules / g °C
Answer:
Zero
Explanation:
The acceleration of body moving with uniform velocity is zero, because there is no change in velocity.
Answer: 7.41 m/s
Explanation: By using the law of of energy, kinetic energy of the brick as it falls equals the potential energy before falling.
Kinetic energy = mv²/2, potential energy = mgh
mv²/2 = mgh
v²/2 = gh
v² = 2gh
v = √2gh
Where g = 9.8 m/s², h = 2.80m
v = √2×9.8×2.8 = 7.41 m/s
Answer:If an object's speed changes, or if it changes the direction it's moving in,
then there must be forces acting on it. There is no other way for any of
these things to happen.
Once in a while, there may be a group of forces (two or more) acting on
an object, and the group of forces may turn out to be "balanced". When
that happens, the object's speed will remain constant, and ... if the speed
is not zero ... it will continue moving in a straight line. In that case, it's not
possible to tell by looking at it whether there are any forces acting on it
Answer
(C).
When there is an angle between the two directions, the cosine of the angle must be considered.
Step by step Solution
The work done by a force is defined as the product of the force and the distance traveled in the direction of motion.
The first answer "Only the component of the force perpendicular to the motion is used to calculate the work" is wrong because, the force perpendicular to motion does no work.
The second choice "If the force acts in the same direction as the motion, then no work is done" is wrong because the work in the direction of the force is
.
Fourth answer "A force at a right angle to the motion requires the use of the sine of the angle" is wrong because the
meaning that there is no work done in the direction perpendicular to the motion.
The third answer" When there is an angle between the two directions, the cosine of the angle must be considered." is correct because the work is calculated using the force in the direction of the motion. The magnitude of this force is 