1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gelneren [198K]
3 years ago
10

So

Physics
2 answers:
aivan3 [116]3 years ago
4 0

The reason for people to swim easier in salt water than fresh water is because of buoyancy

Explanation:

In fresh water there is lack of minerals and has fresh water alone. The density of fresh water is 1000 kg/m³.  Hence, in fresh water  cannot exert the suitable buoyancy for the swimmer to float easier than that of salt water.

But in Salt water due to enrichment of salts  and minerals it is found that salt water has more density than fresh water. Here the salt water offers more buoyancy to the swimmer to lift him up in the water surface and to swim faster and easier than fresh water.

It is similar to that egg floats in the salt water and sinks inside the fresh water because of its own body weight.

Ivenika [448]3 years ago
3 0

Answer:

B)  The salt water has a greater density than fresh water.

Explanation:

Took the test

You might be interested in
Can someone please help me out with this quiz will give brainiest and thanks to people
Virty [35]

Answer:

Energy transferred = 28.8 Joules.

1. Energy transferred = 144 Joules.

2. The unit of potential difference, volts can also be described as Joules per Coulombs.

3. Current, I = 6.945 Amperes.  

Explanation:

<u>Part A.</u>

Given the following data;

Current, I = 1.2A

Time, t = 2 minutes

Potential difference, V = 12 volts.

To find the energy transfered;

Energy transferred = charge moved * potential difference

E = Q * V

Substituting into the equation, we have;

Energy transferred = (1.2 * 2) * 12

Energy transferred = 2.4 * 12

Energy transferred = 28.8 Joules.

<u>Part B.</u>

1. <em><u>Given the following data;</u></em>

Charge, Q = 24C

Potential difference = 6V

To find the energy transferred;

E = Q * V

Substituting into the equation, we have;

E = 24 * 6

E = 144 Joules.

2. Since we know that, Energy transferred = charge moved * potential difference

Potential \; difference = \frac {Energy \; transferred}{Charged \; moved}

The units of energy is Joules while the unit of the quantity of charge moved is Coulomb.

Therefore, the unit of potential difference becomes Joules per Coulomb.

3. <em><u>Given the following data;</u></em>

Potential difference = 18V

Energy transferred = 500J

Time, t = 4 minutes.

To find the current;

E = Q * V

Substituting into the equation, we have;

500 = Q*18

Q = 500/18

Q = 27.78C

But, Charge moved (Q) = current (I) * time (t)

Current, I = Q/t

Substituting into the equation, we have;

Current, I = 27.78/4

Current, I = 6.945 Amperes..

3 0
3 years ago
A uniformly charged sphere has a total charge of 300uc and a radius of 8cm. Find the electric field density at A point 16cm from
s2008m [1.1K]

E = <u>kQ</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>

(r + h)²

where,

k = 9 × 10^9Nm²C^-2

Q = total charge, 300uC = 300 × 10^ -6C

r = 8 × 10^ -2m

h = 16 × 10^ -2m

then,

E = <u>9</u><u>e</u><u>9</u><u> </u><u>*</u><u> </u><u>3</u><u>0</u><u>0</u><u>e</u><u>^</u><u>-</u><u>6</u><u> </u><u> </u><u> </u><u> </u>

(8e^-2 + 16e^-2)²

E = 4687500N/C

6 0
2 years ago
0/2 File Limit
slamgirl [31]

Answer:

Speed at which it will reach the ground is given as

v_f = 46.8 m/s

Total time for which it will remain in air is given as

t = 6.3 s

Explanation:

As we know that the object is projected upwards with speed

v_i = 15 m/s

g = - 9.81 m/s^2

now when it will reach the ground then we have

y = v_y t + \frac{1}{2} at^2

so we have

-100 = 15 t - \frac{1}{2}(-9.81) t^2

4.905 t^2 - 15 t - 100 = 0

so we have

t = 6.3 s

Now speed of the object when it reaches the ground is given as

v_f = v_i + at

v_f = -15 + (9.81)(6.3)

v_f = 46.8 m/s

8 0
3 years ago
A ball with a mass of 5.0 g is moving at a speed of 2.0 m/s. Would doubling the mass or doubling the speed have a greater effect
Sloan [31]

Answer:

Explanation:

doubling the speed will have a greater impact on kinetic energy as KE is a product of mass and the square of velocity.

KE = ½mv²

Base KE = ½(0.005)2.0² = 0.01 J

doubling the mass

        KE = ½(0.010)2.0² = 0.02 J

doubling the velocity

        KE = ½(0.005)4.0² = 0.04 J

8 0
3 years ago
What’s the units of specific heat
DiKsa [7]
Hello Esmeralda

Specific heat is measured in Joules per g times degree Celsius.


I hope this helps!
6 0
3 years ago
Other questions:
  • A circle in the xy-plane has diameter 9.8 cm. A magnetic field of strength 3.4 T is oriented at an angle of 23° to the z-axis, a
    15·1 answer
  • A single proton has which electrical charge?
    11·2 answers
  • How would you present weight change if earth had twice the mass that it does now
    12·1 answer
  • While an object is moving at a constant 20m/s a 5 N force pushes the object to the left at the same time 5 N force is pushing th
    14·1 answer
  • Erica throws a tennis ball against a wall, and it bounces back. Which force is responsible for sending the ball back to Erica? t
    11·2 answers
  • Explain how ozone in the atmosphere affects visible light on earth
    11·1 answer
  • The photons of different light waves:
    9·1 answer
  • Give one example of something you use or make at home that is an example of solubility.
    14·2 answers
  • What physical properties dose plutonium
    7·1 answer
  • Please write ONE complete sentence describing the relationship between Kinetic Energy and Gravitational Potential Energy in a sy
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!