1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gwar [14]
3 years ago
14

Write and solve an equation to find the value of x and the missing angle measures​

Mathematics
2 answers:
Angelina_Jolie [31]3 years ago
6 0

Answer:

x=-5

x+85 = 80 degrees

x+105= 100 degrees

Step-by-step explanation:

(x+85)+(x+105)=180 since it is a straight line

2x+190=180

2x=-10

x=-5

so x+85 = 80 degrees

x+105= 100 degrees

meriva3 years ago
5 0

Answer:

x+85  + x+105 = 180

x = -5

x+85 = -5+85 = 80

x+105 = -5+105 = 100

Step-by-step explanation:

The two angles form a straight line so they add to 180

x+85  + x+105 = 180

Combine like terms

2x + 190 = 180

Subtract 190 from each side

2x+190-190 = 180-190

2x = -10

Divide by 2

2x/2 = -10/2

x = -5

x+85 = -5+85 = 80

x+105 = -5+105 = 100

You might be interested in
Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the corre
dlinn [17]

Answer:

4\sqrt{3}

Step-by-step explanation:

\sqrt{6} \times \sqrt{8}

Multiply

\sqrt{48}

Simplify

\sqrt{16 * 3}

\sqrt{16} \times \sqrt{3}

4 \times \sqrt{3}

4\sqrt{3}

6 0
3 years ago
2,17,82,257,626,1297 next one please ?​
In-s [12.5K]

The easy thing to do is notice that 1^4 = 1, 2^4 = 16, 3^4 = 81, and so on, so the sequence follows the rule n^4+1. The next number would then be fourth power of 7 plus 1, or 2402.

And the harder way: Denote the <em>n</em>-th term in this sequence by a_n, and denote the given sequence by \{a_n\}_{n\ge1}.

Let b_n denote the <em>n</em>-th term in the sequence of forward differences of \{a_n\}, defined by

b_n=a_{n+1}-a_n

for <em>n</em> ≥ 1. That is, \{b_n\} is the sequence with

b_1=a_2-a_1=17-2=15

b_2=a_3-a_2=82-17=65

b_3=a_4-a_3=175

b_4=a_5-a_4=369

b_5=a_6-a_5=671

and so on.

Next, let c_n denote the <em>n</em>-th term of the differences of \{b_n\}, i.e. for <em>n</em> ≥ 1,

c_n=b_{n+1}-b_n

so that

c_1=b_2-b_1=65-15=50

c_2=110

c_3=194

c_4=302

etc.

Again: let d_n denote the <em>n</em>-th difference of \{c_n\}:

d_n=c_{n+1}-c_n

d_1=c_2-c_1=60

d_2=84

d_3=108

etc.

One more time: let e_n denote the <em>n</em>-th difference of \{d_n\}:

e_n=d_{n+1}-d_n

e_1=d_2-d_1=24

e_2=24

etc.

The fact that these last differences are constant is a good sign that e_n=24 for all <em>n</em> ≥ 1. Assuming this, we would see that \{d_n\} is an arithmetic sequence given recursively by

\begin{cases}d_1=60\\d_{n+1}=d_n+24&\text{for }n>1\end{cases}

and we can easily find the explicit rule:

d_2=d_1+24

d_3=d_2+24=d_1+24\cdot2

d_4=d_3+24=d_1+24\cdot3

and so on, up to

d_n=d_1+24(n-1)

d_n=24n+36

Use the same strategy to find a closed form for \{c_n\}, then for \{b_n\}, and finally \{a_n\}.

\begin{cases}c_1=50\\c_{n+1}=c_n+24n+36&\text{for }n>1\end{cases}

c_2=c_1+24\cdot1+36

c_3=c_2+24\cdot2+36=c_1+24(1+2)+36\cdot2

c_4=c_3+24\cdot3+36=c_1+24(1+2+3)+36\cdot3

and so on, up to

c_n=c_1+24(1+2+3+\cdots+(n-1))+36(n-1)

Recall the formula for the sum of consecutive integers:

1+2+3+\cdots+n=\displaystyle\sum_{k=1}^nk=\frac{n(n+1)}2

\implies c_n=c_1+\dfrac{24(n-1)n}2+36(n-1)

\implies c_n=12n^2+24n+14

\begin{cases}b_1=15\\b_{n+1}=b_n+12n^2+24n+14&\text{for }n>1\end{cases}

b_2=b_1+12\cdot1^2+24\cdot1+14

b_3=b_2+12\cdot2^2+24\cdot2+14=b_1+12(1^2+2^2)+24(1+2)+14\cdot2

b_4=b_3+12\cdot3^2+24\cdot3+14=b_1+12(1^2+2^2+3^2)+24(1+2+3)+14\cdot3

and so on, up to

b_n=b_1+12(1^2+2^2+3^2+\cdots+(n-1)^2)+24(1+2+3+\cdots+(n-1))+14(n-1)

Recall the formula for the sum of squares of consecutive integers:

1^2+2^2+3^2+\cdots+n^2=\displaystyle\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}6

\implies b_n=15+\dfrac{12(n-1)n(2(n-1)+1)}6+\dfrac{24(n-1)n}2+14(n-1)

\implies b_n=4n^3+6n^2+4n+1

\begin{cases}a_1=2\\a_{n+1}=a_n+4n^3+6n^2+4n+1&\text{for }n>1\end{cases}

a_2=a_1+4\cdot1^3+6\cdot1^2+4\cdot1+1

a_3=a_2+4(1^3+2^3)+6(1^2+2^2)+4(1+2)+1\cdot2

a_4=a_3+4(1^3+2^3+3^3)+6(1^2+2^2+3^2)+4(1+2+3)+1\cdot3

\implies a_n=a_1+4\displaystyle\sum_{k=1}^3k^3+6\sum_{k=1}^3k^2+4\sum_{k=1}^3k+\sum_{k=1}^{n-1}1

\displaystyle\sum_{k=1}^nk^3=\frac{n^2(n+1)^2}4

\implies a_n=2+\dfrac{4(n-1)^2n^2}4+\dfrac{6(n-1)n(2n)}6+\dfrac{4(n-1)n}2+(n-1)

\implies a_n=n^4+1

4 0
3 years ago
In parallelogram ABCD, the measure of angle A = 3x and the measure of angle B = x + 10.
densk [106]

Answer: 42.5

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
What is the measure of angle 1?
lbvjy [14]

Answer:

70 degrees.

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
4. Find each quotient. a.18/-3 b.-5/-1 c.24/-6 d.-10/-1 e.-25/5 f.8/-2
Nataly_w [17]

Answer:

Step-by-step explanation:

a.18/-3  = (-6)

b.  -5/-1 = 5

c. 24/-6 = (-4)

d. -10/-1  = 10

e. -25/5 =(-5)

f.    8/-2 = (-4)

In multiplication and division, if there are are odd number of negative signs, the result will have negative sign.

If there are even number of negative signs, the the result will have positive sign

6 0
3 years ago
Other questions:
  • Bill owes $425.07 on his credit card. He returns two items, one for $45.55 and the other for $54.68. Then he makes purchases of
    11·1 answer
  • -27 +<br> = 4(x2 – 6x + 9)
    9·1 answer
  • Find the value of c that makes the trinomial a perfect square.
    15·2 answers
  • How do you convert 15 feet into centimeters
    6·1 answer
  • I will<br> Do anything please help !!!!!!!
    7·2 answers
  • I Need Help With This, It is My Last question
    6·2 answers
  • 100 POINTS AND BRAINLIEST
    5·2 answers
  • Help! what is the missing length?
    8·2 answers
  • The avenues in a particular city run north to south and are numbered consecutively with 1st Avenue at the western border of the
    8·1 answer
  • Which of these sets of triangles are congruent according to the hypotenuse leg congruency postulate?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!