<span>The median is a better measure of center when there is an outlier which will make the mean not be a good estimate of the center. Option B has $1075 as an outlier (i.e. it is far away from the other data sets). Hence, the median will be a better estimate of the center. Similarly, 94 is an outlier in option C and hence, the median is a better estimate. Options A and D has no outliers, making the mean a good estimate of the centre.</span>
Hey!! Glad I can Help!
Answer:
B
Step-by-step explanation:
Process of elimination.
4x3=12 + 2 = 14 and only 1 answer has 14 as the answer.
If satisfied please leave a review and feel free to give brainiest.
Answer:
Step-by-step explanation:
![\frac{4}{5} \div \bigg[ {\bigg( \frac{4}{5} \bigg)}^{7} .{\bigg( \frac{4}{5} \bigg)}^{0}\bigg] \\ \\ = \frac{4}{5} \div \bigg[ {\bigg( \frac{4}{5} \bigg)}^{7} .1\bigg] \\ \\ = \frac{4}{5} \div {\bigg( \frac{4}{5} \bigg)}^{7}\\ \\ = \frac{4}{5} \times {\bigg( \frac{5}{4}\bigg)}^{7} \\ \\ = {\bigg( \frac{5}{4}\bigg)}^{6}](https://tex.z-dn.net/?f=%20%20%5Cfrac%7B4%7D%7B5%7D%20%20%5Cdiv%20%20%5Cbigg%5B%20%20%7B%5Cbigg%28%20%5Cfrac%7B4%7D%7B5%7D%20%5Cbigg%29%7D%5E%7B7%7D%20.%7B%5Cbigg%28%20%5Cfrac%7B4%7D%7B5%7D%20%5Cbigg%29%7D%5E%7B0%7D%5Cbigg%5D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D%20%20%5Cdiv%20%20%5Cbigg%5B%20%20%7B%5Cbigg%28%20%5Cfrac%7B4%7D%7B5%7D%20%5Cbigg%29%7D%5E%7B7%7D%20.1%5Cbigg%5D%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D%20%20%5Cdiv%20%20%20%20%7B%5Cbigg%28%20%5Cfrac%7B4%7D%7B5%7D%20%5Cbigg%29%7D%5E%7B7%7D%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D%20%20%5Ctimes%20%20%20%20%7B%5Cbigg%28%20%5Cfrac%7B5%7D%7B4%7D%5Cbigg%29%7D%5E%7B7%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%5Cbigg%28%20%5Cfrac%7B5%7D%7B4%7D%5Cbigg%29%7D%5E%7B6%7D)
Lo siento, solo necesito puntos ...
The value of x is 1
Explanation:
The equation is 
Subtracting both sides by 3, we get,

Taking log on both sides, we get,

Rewriting the equation by 
Thus, we have,

Applying log rule, if
, then 
Thus, 
Substituting
in
, we get,

Also, since,
, then 
Thus, 
Hence, the value of x is 1