Answer:
<em>The density of rock = 3.37 g/cm³</em>
Explanation:
Density: Density can be defined as the ratio of the mass of a body to the volume. The S.I unit of density is kg/m³. It can be expressed mathematically as ,
D = M/V............................................... Equation 1
Where D = density of the body, M = mass of the body, V = volume of the body.
From Archimedes' principle, a body will displace a volume of water equal to its volume.
Therefore, Volume of the object = volume of water displaced
<em>Given: M = 300 g, V = volume of water displace = 89.0 cm³.</em>
<em>Substituting these values into equation 1</em>
<em>D = 300/89</em>
<em>D = 3.37 g/cm³</em>
<em>The density of rock = 3.37 g/cm³</em>
Answer:
Convection currents are the result of different heating. Lighter material (warm) rises while heavier (cold) material sinks. This movement of the materials is what causes convection currents! (BTW, it happens in water, in the atmosphere, and in the mantle of Earth!
Explanation:
I hope this helps a little! :)
Answer:
aaksj
Explanation:
a) the capacitance is given of a plate capacitor is given by:
C = \epsilon_0*(A/d)
Where \epsilon_0 is a constant that represents the insulator between the plates (in this case air, \epsilon_0 = 8.84*10^(-12) F/m), A is the plate's area and d is the distance between the plates. So we have:
The plates are squares so their area is given by:
A = L^2 = 0.19^2 = 0.0361 m^2
C = 8.84*10^(-12)*(0.0361/0.0077) = 8.84*10^(-12) * 4.6883 = 41.444*10^(-12) F
b) The charge on the plates is given by the product of the capacitance by the voltage applied to it:
Q = C*V = 41.444*10^(-12)*120 = 4973.361 * 10^(-12) C = 4.973 * 10^(-9) C
c) The electric field on a capacitor is given by:
E = Q/(A*\epsilon_0) = [4.973*10^(-9)]/[0.0361*8.84*10^(-12)]
E = [4.973*10^(-9)]/[0.3191*10^(-12)] = 15.58*10^(3) V/m
d) The energy stored on the capacitor is given by:
W = 0.5*(C*V^2) = 0.5*[41.444*10^(-12) * (120)^2] = 298396.8*10^(-12) = 0.298 * 10 ^6 J
In an inelastic collision, only momentum is conserved, while energy is not conserved.
1) Velocity of the nail and the block after the collision
This can be found by using the total momentum after the collisions:

where
m=0.1 kg is the mass of the nail
M=10 kg is the mass of the block of wood
Rearranging the formula, we find

, the velocity of the nail and the block after the collision:

2) The velocity of the nail before the collision can be found by using the conservation of momentum. In fact, the total momentum before the collision is given only by the nail (since the block is at rest), and it must be equal to the total momentum after the collision:

Rearranging the formula, we can find

, the velocity of the nail before the collision:
I think being self disciplined is when you are a responsible and mature person and maybe raised yourself I don’t know what else to write you can expand on this