1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondor19780726 [428]
3 years ago
5

2x+7y =3 x= -4y x= y=

Mathematics
2 answers:
Anastasy [175]3 years ago
8 0
Y = -3
X = 12

Substitute the second equation into the first to get y and then using that you can work out x :)
egoroff_w [7]3 years ago
3 0

Answer:

Y=2

x=7

but they all equal 3

You might be interested in
Simplify the radical: √80
Nastasia [14]

Answer:

4√5

Step-by-step explanation:

if this isnt the answer u needed lmk!!

7 0
2 years ago
Read 2 more answers
Show that if X is a geometric random variable with parameter p, then
Lubov Fominskaja [6]

Answer:

\sum_{k=1}^{\infty} \frac{p(1-p)^{k-1}}{k}=-\frac{p ln p}{1-p}

Step-by-step explanation:

The geometric distribution represents "the number of failures before you get a success in a series of Bernoulli trials. This discrete probability distribution is represented by the probability density function:"

P(X=x)=(1-p)^{x-1} p

Let X the random variable that measures the number os trials until the first success, we know that X follows this distribution:

X\sim Geo (1-p)

In order to find the expected value E(1/X) we need to find this sum:

E(X)=\sum_{k=1}^{\infty} \frac{p(1-p)^{k-1}}{k}

Lets consider the following series:

\sum_{k=1}^{\infty} b^{k-1}

And let's assume that this series is a power series with b a number between (0,1). If we apply integration of this series we have this:

\int_{0}^b \sum_{k=1}^{\infty} r^{k-1}=\sum_{k=1}^{\infty} \int_{0}^b r^{k-1} dt=\sum_{k=1}^{\infty} \frac{b^k}{k}   (a)

On the last step we assume that 0\leq r\leq b and \sum_{k=1}^{\infty} r^{k-1}=\frac{1}{1-r}, then the integral on the left part of equation (a) would be 1. And we have:

\int_{0}^b \frac{1}{1-r}dr=-ln(1-b)

And for the next step we have:

\sum_{k=1}^{\infty} \frac{b^{k-1}}{k}=\frac{1}{b}\sum_{k=1}^{\infty}\frac{b^k}{k}=-\frac{ln(1-b)}{b}

And with this we have the requiered proof.

And since b=1-p we have that:

\sum_{k=1}^{\infty} \frac{p(1-p)^{k-1}}{k}=-\frac{p ln p}{1-p}

4 0
3 years ago
The sum of two integers with different signs is eight give to possible integers that fit this description
Soloha48 [4]
An easy way is to do this
the 2 numbers are -x and x+8 where x is an integer

we can generate lots of numbers this way

example
-1 and 9
-2 and 10
8 0
3 years ago
6) Work out 4 x 10-5 x 6 x 1012<br>Give your answer in standard form.​
julia-pushkina [17]

Answer:

4 × 5 × 6 × 1012 = 121440

= 1.2 × 10⁵

5 0
3 years ago
Problemas de razonamiento división de números decimales. Ayer Susana se fue de viaje a visitar a unos familiares. Recorrió 135,7
schepotkina [342]

Usando las relaciones entre velocidad, distancia y tiempo, se encuentra que ella condujo a una velocidad media de 90,5 km/h.

--------------------------

La <u>velocidad </u><u>es la distancia dividida por el tiempo</u>, por lo que:

v = \frac{d}{t}

  • Total de 135,75 km, o sea, d = 135,75
  • Llego en 1,5 horas, o sea, t = 1,5

La velocidad es:

v = \frac{d}{t} = \frac{135,75}{1,5}

División de decimales, o sea, seguimos multiplicando los números por 10 hasta que ninguno sea decimal:

v = \frac{135,75}{1,5} = \frac{1357,5}{15} = \frac{13575}{150} = 90,5

Ella condujo a una velocidad media de 90,5 km/h.

Un problema similar es dado en brainly.com/question/24558377

4 0
2 years ago
Other questions:
  • Select each correct answer.
    12·1 answer
  • (4/9)-¹ ?????????? what is it? <br> -9/4<br> -4/9<br> 9/4
    9·1 answer
  • Jason has 4 tiles. each tile has a number printed on it. the numbers are 2, 6, 8.
    15·1 answer
  • the sum of two digit number is 8 if 18 is added to the number its digits are reversed find the number​
    6·1 answer
  • A cuboid measures 60cm by 40cm by 20cm.
    11·1 answer
  • Marcus and Phillip are in the Robotics Club. They are both saving money to buy materials to build a new robot. They plan to save
    8·1 answer
  • a sporting goods store offers a 40% discount on all gulf clubs. rocco spent 20% of the money in his savings account on a golf pu
    7·1 answer
  • WILL MARK BRAINLIEST!!!! please help, show work if you can
    9·1 answer
  • There are 9 members on a board of directors. If they must form a subcommittee of 3 members, how many different subcommittees are
    14·2 answers
  • Please help as soon as possible!!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!