<span>ZnS + O --> ZnO + SO
Okay so first you have to count up the number of elements on each side of the equation. Your objective is to have the same number of each element on both sides.
Left Side:
Zn - 1
S - 1
O - 1
Right Side:
Zn - 1
S - 1
O - 2
Since there are two oxygens on the right side, you have to add a coefficient of 2 to the oxygen on the left side. The coefficient tells us that that element or molecule is being multiplied by the value of coefficient. Since we're adding a coefficient of 2 to the oxygen on the left side, there are now 2 oxygens on that side. Because that is the same amount of oxygen as on the right, the equation is now balanced.
Your final equation should look like this: </span>ZnS + 2O --> ZnO + SO
In conclusion, the answer is 2.
Answer:
d. 12.3 grams of Al2O3
Explanation:
The balanced chemical equation of this chemical reaction is as follows:
4Al + 3O2 --> 2Al2O3
Based on the balanced equation, 4 moles of aluminum (limiting reagent) reacts to form 2 moles of aluminum oxide (Al2O3).
First, we need to convert the mass of aluminum to moles using the formula;
mole = mass/molar mass
Molar mass of Al = 27g/mol
mole = 6.50/27
= 0.241mol of Al.
Hence, if 4 moles of aluminum (limiting reagent) reacts to form 2 moles of aluminum oxide (Al2O3).
Then, 0.241mol of Al will produce (0.241 × 2/4) = 0.241/2 = 0.121mol of Al2O3.
Convert this mole value to molar mass using mole = mass/molar mass
Molar mass of Al2O3 = 27(2) + 16(3)
= 54 + 48
= 102g/mol
mass = molar mass × mole
mass = 102 × 0.121
mass of Al2O3 = 12.34grams.
Answer:
Explanation:
Incorrect name correct name
a) calcium dichloride calcium chloride
b) copper(II) oxide copper(I) oxide
c) stannous tetrafluoride stannic fluoride
d) hydrogen chloride acid hydrochloric acid
Answer:
seasons experienced by the northern and southern hemisphere always differ by six months when it is summer in the northern hemisphere, it is winter in the southern hemisphere
Explanation:
The equilibrium constant (K) : 11.85
<h3>Further explanation</h3>
Given
Reaction
N₂(g) + 3H₂(g) ⇒ 2NH₃(g)
Required
K(equilibrium constant)
Solution
The equilibrium constant (K) is the value of the concentration product in the equilibrium
The equilibrium constant based on concentration (K) in a reaction
pA + qB -----> mC + nD
![\tt K=\dfrac{[C]^m[D]^n}{[A]^p[B]^q}](https://tex.z-dn.net/?f=%5Ctt%20K%3D%5Cdfrac%7B%5BC%5D%5Em%5BD%5D%5En%7D%7B%5BA%5D%5Ep%5BB%5D%5Eq%7D)
For the reaction above :
![\tt K=\dfrac{[NH_3]^2}{[N_2][H_2]^3}\\\\K=\dfrac{0.1^2}{0.25\times 0.15^3}\\\\K=11.85](https://tex.z-dn.net/?f=%5Ctt%20K%3D%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D%5C%5C%5C%5CK%3D%5Cdfrac%7B0.1%5E2%7D%7B0.25%5Ctimes%200.15%5E3%7D%5C%5C%5C%5CK%3D11.85)