The correct answer from the choices given is the third option. Covalent compounds have low boiling points. Also, their melting points are low. Covalent bonds have relatively low attractions which results to these properties. The bonds are easily broken by taking energy or adding energy.
Answer:
The answer to your question is 1.11 M
Explanation:
Data
volume 1 = 287 ml
concentration 1 = 1.6 M
volume 2= 412 ml
concentration 2 = ?
Formula
Volume 1 x concentration 1 = Volume 2 x concentration 2
Solve for concentration 2
concentration 2 = (volume 1 x concentration 1) / volume 2
Substitution
concentration 2 = (287 x 1.6) / 412
Simplification
concentration 2 = 459.2 / 412
Result
concentration 2 = 1.11 M
FeS is an example of an ionic compound as in the formula there is a metal of Fe iron chemically bonded to the nonmetal S sulphur. Resulting in a strong electrostatic attraction due to the transfer of valence electrons from the iron to the Sulphur.
Answer: For the elementary reaction
the molecularity of the reaction is 2, and the rate law is rate = ![k[NO_3]^1[CO]^1](https://tex.z-dn.net/?f=k%5BNO_3%5D%5E1%5BCO%5D%5E1)
Explanation:
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.
Molecularity of the reaction is defined as the number of atoms, ions or molecules that must colloid with one another simultaneously so as to result into a chemical reaction. Thus it can never be fractional.
For elementary reaction
, molecularity is 2 and rate law is ![rate=k[NO_3]^1[CO]^1](https://tex.z-dn.net/?f=rate%3Dk%5BNO_3%5D%5E1%5BCO%5D%5E1)