Average speed = (total distance) / (total time)
Average speed = (4+7+1+2 blox) / (1 hour)
<em>Average speed = 14 blocks/hour</em>
<em></em>
I'm gonna go out on a limb here and take a wild guess:
I'm guessing that there's another question glued onto the end of this one, and it asks you to find either her displacement or her average velocity. I'm so sure of this that I'm gonna give you the solution for that too. If there's no more question, then you won't need this, and you can just discard it. I won't mind.
Average velocity = (displacement) / (time for the displacement)
"Displacement" = distance and direction from the start point to the end point, regardless of how she got there.
Displacement = (4E + 7W + 1E + 2W)
Displacement = (5E + 9W)
<em>Displacement = 4 blocks west</em>
Average velocity = (4 blocks west) / (1 hour)
<em>Average velocity = 4 blocks/hour West</em>
I believe it’s “C”
Hope that’s help you(:
Answer:
dt/dx = -0.373702
dt/dy = -1.121107
Explanation:
Given data
T(x, y) = 54/(7 + x² + y²)
to find out
rate of change of temperature with respect to distance
solution
we know function
T(x, y) = 54 /( 7 + x² + y²)
so derivative it x and y direction i.e
dt/dx = -54× 2x / (7 +x² + y²)² .........................1
dt/dy = -54× 2y / (7 + x² + y²)² .........................2
now put the value point (1,3) as x = 1 and y = 3 in equation 1 and 2
dt/dx = -54× 2(1) / (7 +(1)² + (3)²)²
dt/dx = -0.373702
and
dt/dy = -54× 2(3) / (7 + (1)² + (3)²)²
dt/dy = -1.121107
One form of Ohm's Law says . . . . . Resistance = Voltage / Current .
R = V / I
R = (12 v) / (0.025 A)
R = (12 / 0.025) (V/I)
<em>R = 480 Ohms</em>
I don't know if the current in the bulb is steady, because I don't know what a car's "accumulator" is. (Floogle isn't sure either.)
If you're referring to the car's battery, then the current is quite steady, because the battery is a purely DC storage container.
If you're referring to the car's "alternator" ... the thing that generates electrical energy in a car to keep the battery charged ... then the current is pulsating DC, because that's the form of the alternator's output.
Answer:
1. The sound waves are longitudinal because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves.
2. A pulse or a wave is introduced into a slinky when a person holds the first coil and gives it a back-and-forth motion. This creates a disturbance within the medium; this disturbance subsequently travels from coil to coil, transporting energy as it moves.
Explanation: