1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
likoan [24]
3 years ago
13

The chilled water system for a 27-story building has a pump located at ground level. The lost head in a vertical riser from the

pump to an equipment room on the twenty-seventhfloor is 40ftof water, and the pump produces 270ft of head. What is the pressure on the suction side of the pump for a pressure of 8 psig to exist in the riser on the twenty-fifth floor
Physics
1 answer:
Artemon [7]3 years ago
5 0

This question is incomplete, the complete question is;

The chilled water system for a 27-story building has a pump located at ground level. The lost head in a vertical riser from the pump to an equipment room on the twenty-seventh floor is 40ft of water, and the pump produces 270ft of head. What is the pressure on the suction side of the pump for a pressure of 8 psig to exist in the riser on the twenty-fifth floor

Assume 12ft of elevation per floor

Answer: 48.68 psig

Explanation:

First  we calculate the elevation of the building

hb = 27 story * 12ft per floor/story

hb =  324 ft

given that the head lost in the vertical riser hL = 40 ft

now the delivery head required in the riser on he 27th floor;

hd = 8 psig *  (2.31 ft / 1 psig)

hd = 18.46 ft

Now calculate the suction head required by balancing the energy per unit weight of water, considering pump as the control volume

hp = (hb + hL + hd) - hs

hs = hb + hL + hd - hp

where hp is the head developed by the pump (270 ft)

hb is the elevation of the 27th floor of the building ( 324 ft)

hL is the head lost in the vertical riser ( 40 ft)

hd is the head required to exist in the riser on the 27th floor (18.46 ft)

so we substitute

hs = 324 ft + 40 ft + 18.46 ft - 270 ft

hs = 112.46

so 112.46ft * (1 psig / 2.31 ft)

= 48.68 psig

You might be interested in
Three charges, Q1, Q2, and Q3 are located in a straight line. The position of Q2 is 0.301 m to the right of Q1. Q3 is located 0.
Alexxx [7]

Answer and Explanation: A charge exerts a force over another charge even if they are very far apart. This force is called <u>Electrostatic</u> <u>Force</u>.

If the two charges have the same sign, e.g. both aare positive, the force between them is opposite. If they have opposite sign, the force is towards each other. In other words, for electrostatic force, equal charges repel and different charges attract.

So,

1. If Q2 and Q3 have opposite signs, it is TRUE force in Q2 will go the left;

2. If the 2 are negative, they have the same sign, so it's FALSE force is to the right;

Sentences 3 and 4 are also TRUE due to the reasons described above;

5. If the charges have opposite signs, it means force is towards each other, or, to the right, so the sentence is TRUE;

1. Force is directly proportional to charges in Coulomb [C] and inversely proportional to distance squared in [m]:

F=\frac{k.q.Q}{r^{2}}

where k is a constant that equals 9 x 10⁹ N.m²/C²

Calculating force between 1 and 2:

F_{12}=\frac{9.10^{9}(1.9.10^{-6})(2.84.10^{-6})}{(0.301)^{2}}

F_{12}=536.02.10^{-3} N

Force between 2 and 3:

F_{23}=\frac{9.10^{9}(2.84.10^{-6})(3.03.10^{-6})}{(0.169)^{2}}

F_{23}=2711.63.10^{-3} N

Total force is the net force. Since Q2 is negative and the others are positive, force of 2 related to 1 is to left and related to 3 is to the right. Therefore, total force is the difference between those two forces:

F_{T}=2711.63.10^{-3}-536.02.10^{-3}

F_{T}=2175.61.10^{-3} N

The total force on Q2 is 2175.61 x 10⁻³ N

2. For net force to be 0, F_{13}=F_{23}. Suppose distance from 1 to 3 is x, then from 2 to 3 is x-0.301

Calculating:

\frac{k(1.90.10^{-6})(3.03.10^{-6})}{x^{2}}=\frac{k(2.84.10^{-6})(3.03.10^{-6})}{(x-0.301)^{2}}

\frac{5.757.10^{-12}}{x^{2}} =\frac{8.6052.10^{-12}}{x^{2}-0.602x+0.090601}

\frac{5.757.10^{-12}}{8.6052.10^{-12}}=\frac{x^{2}}{x^{2}-0.602x+0.090601}

x^{2}=0.67x^{2}-0.40x+0.061

0.33x^{2}+0.40x-0.061=0

roots = 0.14 or -1.35

Solving quadratic equation gives 2 roots, but one of the roots is negative. As distance is a measure that cannot be negative, the solution is x = 0.14.

The distance of Q3 relative to Q1 is 0.14 m

4 0
3 years ago
The drag on a pitched baseball can be surprisingly large. Suppose a 145 g baseball with a diameter of 7.4 cm has an initial spee
kupik [55]

Answer:

<h2>Part A)</h2><h2>Acceleration of the ball is 10.1 m/s/s</h2><h2>Part B)</h2><h2>the final speed of the ball is given as</h2><h2>v_f = 35.3 m/s</h2>

Explanation:

Part a)

As we know that drag force is given as

F = \frac{C_d \rho A v^2}{2}

C_d = 0.35

A = \frac{\pi d^2}{4}

A = \frac{\pi(0.074)^2}{4}

A = 4.3 \times 10^{-3} m^2

v = 40.2 m/s

so we have

F = \frac{0.35\times 1.2 (4.3 \times 10^{-3})(40.2)^2}{2}

F = 1.46 N

So acceleration of the ball is

a = \frac{F}{m}

a = \frac{1.46}{0.145}

a = 10.1 m/s^2

Part B)

As per kinematics we know that

v_f^2 - v_i^2 = 2 a d

v_f^2 - 40.2^2 = 2(-10.1)(18.4)

v_f = 35.3 m/s

4 0
4 years ago
What happens to energy and frequency of a wave if its wavelength increases?
Dahasolnce [82]

Answer:

Waves can be measured using wavelength and frequency. ... The distance from one crest to the next is called a wavelength (λ). The number of complete wavelengths in a given unit of time is called frequency (f). As a wavelength increases in size, its frequency and energy (E) decrease.

7 0
3 years ago
A space ship to the moon covered the 216,000 km in 72 hours. What was it’s average velocity
Dahasolnce [82]

Answer:3000km/h

Explanation:

speed=distance/time

216,000km/72hrs

=3000km/h

8 0
3 years ago
Read 2 more answers
Imagine a particle that has three times the mass of the electron. All other quantities given above remain the same. What is the
melamori03 [73]

Answer:

The only parameter that changes is mass m

It is only necessary to calculate the ratio Eh/Ee

m_{h}=3m_{e}\\E_{h}=\frac{3m_{e}v^{2}}{2}\\E_{e}=\frac{m_{e}v^{2}}{2}\\\frac{E{h}}{E{e}}=3

The kinetic energy of the heavy paricle is three times the kinetic energy of an electron

5 0
3 years ago
Other questions:
  • A ball is thrown horizontally from the roof of a building 7.8 m tall and lands 9.5 m from the base. what was the ball's initial
    8·1 answer
  • What is a descriptions of an animal cell's nucleus?
    9·1 answer
  • what is the acceleration of a 20kg bike if its being pedaled in a northerly direction with constant unbalanced force of 10 nwhat
    14·1 answer
  • An air bubble has a volume of 1.3 cm3 when it is released by a submarine 160 m below the surface of a freshwater lake. What is t
    15·1 answer
  • 3 objects that have gravitational potential energy?
    5·2 answers
  • How would the force of gravity between two objects change the distance between them were to double?
    7·2 answers
  • Which color of light has a longer wavelength than yellow?
    5·2 answers
  • In which era did the universe’s clouds start to condense and the universe became transparent for the first time?
    9·1 answer
  • You are out camping. As it gets dark, it starts to get cold so you light a fire. What are two energy transformations that explai
    13·1 answer
  • (For example, if you used a lunch meat that claimed to be 97% fat-free, were just 3% of its calories provided by fat?) If the ma
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!