Given:
The force of attraction is F = 48.1 N
The separation between the charges is

Also, the magnitude of charge q1 = q2 = q.
To find the magnitude of charge.
Explanation:
The magnitude of charge can be calculated by the formula

Here, k is the Coulomb's constant whose value is

On substituting the values, the magnitude of charge will be

Thus, the magnitude of each charge is 9.91 x 10^(-4) micro Coulombs.
Answer:
I think it is difficult to determine what has caused climate change in the distant past because it must have been a long time ago so geologists can't carry out different experiments and figure out what gases the planet had conjured, so geologists can only make predictions based off the evidence they currently have from what the planet looked like before. The planet must have changed over the years, therefore the climate has also changed in the future, so they cannot work with how the planet looked in the past.
<h2>
Answer: B. Gravitational potential energy </h2>
Explanation:
<em>The gravitational potential energy is the energy that a body or object possesses, due to its position in a gravitational field.
</em>
That is why this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.
In the case of the <u>Earth</u>, in which <u>the gravitational field is considered constant</u>, the value of the gravitational potential energy
will be:
Where
is the mass of the object,
the acceleration due gravity and
the height of the object.
As we can see, the value of
is directly proportional to the height.
Answer:
17 °C
Explanation:
From specific Heat capacity.
Q = cm(t₂-t₁)................. Equation 1
Where Q = Heat absorb by the metal block, c = specific heat capacity of the metal block, m = mass of the metal block, t₂ = final temperature, t₁ = Initial temperature.
make t₁ the subject of the equation
t₁ = t₂-(Q/cm)............... Equation 2
Given: t₂ = 22 °C, Q = 5000 J, m = 4 kg, c = 250 J/kg.°c
Substitute into equation 2
t₁ = 22-[5000/(4×250)
t₁ = 22-(5000/1000)
t₁ = 22-5
t₁ = 17 °C
Answer:
1.327363 m/s
0.00090243 m
Explanation:
u = Initial velocity
v = Final velocity
m = Mass of flea
Energy

The velocity of the flea when leaving the ground is 1.327363 m/s

The flea will travel 0.00090243 m upward