Solution :
a). Using Gauss's law :
,
.........(1)
Let
in equation (1)
Therefore,
.............(2)



....................(3)
Therefore, 

.............(4)
Now differentiating the equation (4) w.r.t. 'b', we get
Thus the radius for the inner cylinder conductor is 
b). For the energy storage, substitute the radius in (4), we get

This is the amount of energy stored in the conductor.
Answer:
<em>The net force acting on the object is 0 N</em>
Explanation:
<u>Newton's Second Law of Forces</u>
The net force acting on a body is proportional to the mass of the object and its acceleration.
The net force can be calculated as the sum of all the force vectors in each rectangular coordinate separately.
The image shows a free body diagram where four forces are acting: two in the vertical direction and two in the horizontal direction.
Note the forces in the vertical direction have the same magnitude and opposite directions, thus the net force is zero in that direction.
Since we are given the acceleration a =0, the net force is also 0, thus the horizontal forces should be in equilibrium.
The applied force of Fapp=10 N is compensated by the friction force whose value is, necessarily Fr=10 N in the opposite direction.
The net force acting on the object is 0 N
Answer:
acceleration
Explanation:
acceleration determines whether you will be adding to or subtracting from the velocity. while negative acceleration means you will subtract from the current value of the velocity and a positive acceleration means you will add
Answer:
v =163.95 m/s
Explanation:
Given that,
The wavelength of wave, 
Distance covered, 
We need to find the speed of the wave. We know that,
speed = distance/time
So,

So, the speed of the wave is equal to 163.95 m/s.
Diffraction is the slight bending of light when it passes around the edge of an object. The amount of bending depends on the relative of the wavelength of the light wave to the size of the opening. If the opening is much larger than the wavelength the bending will be almost unnoticeable but if the two are equal or closer in length then the diffraction will be noted. Therefore, the correct answer is bends.