The problem is solved and the questions are answered below.
Explanation:
a. To calculate the speed of the 0.66 kg ball just before the collision
V₀ + K₀ = V₁ + K₁
= mgh₀ = 1/2 mv₁²
where, h= r - r cosθ
V = 
V = 2.42 m/s
b. Calculate the speed of the 0.22 kg ball immediately after the collision
y = y₀ + Vy₀t - 1/2 gt²
0 = 1.2 - 1/2 gt²
t = 0.495 s
x = x₀ + Vx₀t
1.4 = 0 + vx₀ (0.495)
Vx₀ = 2.83 m/s
C. To Calculate the speed of the 0.66 kg ball immediately after the collision
m₁ v₁ = m₁ v₃ + m₂ v₄
(0.66)(2.42) = (0.66) v₃ + (0.22)(2.83)
V₃ = 1.48 m/s
D. To Indicate the direction of motion of the 0.66 kg ball immediately after the collision is to the right.
E. To Calculate the height to which the 0.66 kg ball rises after the collision
V₀ + k₀ = V₁ + k₁
1/2 mv₀² = mgh₁
h₁ = v₀²/2 g
= 0.112 m
F. Based on your data, No the collision is not elastic.
Δk = 1/2 m₁v₃² =1/2 m₂v₄² - 1/2 m₁v₁²
= 1/2 (0.66)(1.48)² + 1/2 (0.22)(2.83)² - 1/2 (0.66)(2.42)²
= - 0.329 J
Hence, kinetic energy is not conserved.
answer
v = 4.2
set up an equation
we can use the formula for kinetic energy since we know mass and kinetic energy
K = 
v = 
values
K = 0.013 J
m = 1.5g = 0.0015 kg
plug in values
v = 
v = 4.2
Answer:
9800 Pa
Explanation:
Data: pressure-?
Force- mass ×acceleration
= 50× 9.8m/s^2
=490N
Area= 500cm^2=0.05m^2
pressure= force/ area
p=F/A
P= (490N)/( 0.05m^2)
=9800 Pa