Answer:
a
Explanation:
because it has more energy
Part A.
The forces are the same because the force from the smaller ball it transferring its Energy through the basketball and it's rebounding as Connecticut Energy back up to the smaller ball
It stops accelerating when the air resistance is equal to its weight.
That's (m•g)
= (2 kg) • (9.8 m/s^2)
= 19.6 newtons
Answer:
ac = 3.92 m/s²
Explanation:
In this case the frictional force must balance the centripetal force for the car not to skid. Therefore,
Frictional Force = Centripetal Force
where,
Frictional Force = μ(Normal Force) = μ(weight) = μmg
Centripetal Force = (m)(ac)
Therefore,
μmg = (m)(ac)
ac = μg
where,
ac = magnitude of centripetal acceleration of car = ?
μ = coefficient of friction of tires (kinetic) = 0.4
g = 9.8 m/s²
Therefore,
ac = (0.4)(9.8 m/s²)
<u>ac = 3.92 m/s²</u>
Answer:

Explanation:
We can use the conservation of momentum. The initial momentum is equal to the final momentum:
x-coordinate

(1)
y-coordinate

(2)
We can divide equations (2) and (1):



I hope it helps you!