Answer:
Molar mass and Mass
Explanation:
The relationship between mass and number of moles is given as;
Number of moles = Mass / Molar mass
Mass = 1.6 g
Molar mass of HCl = ( 1 + 35.5 ) = 36.5 g/mol
Number of moles = 1.6 g / 36.5 g/mol
Number of moles = 0.0438 mol
Explanation:
Entropy means the amount of randomness present within the molecules of the body of a substance.
Relation between entropy and microstate is as follows.
S = 
where, S = entropy
= Boltzmann constant
= number of microstates
This equation only holds good when the system is neither losing or gaining energy. And, in the given situation we assume that the system is neither gaining or losing energy.
Also, let us assume that
= 1, and
= 0.833
Therefore, change in entropy will be calculated as follows.

= 
= 
= 
or, = 
Thus, we can conclude that the entropy change for a particle in the given system is
J/K particle.
<u>Answer:</u> The enthalpy of the reaction is coming out to be -902 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f_{(product)}]-\sum [n\times \Delta H_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(4\times \Delta H_f_{(NO(g))})+(6\times \Delta H_f_{(H_2O(g))})]-[(4\times \Delta H_f_{(NH_3(g))})+(5\times \Delta H_f_{(O_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%284%5Ctimes%20%5CDelta%20H_f_%7B%28NO%28g%29%29%7D%29%2B%286%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%284%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%28g%29%29%7D%29%2B%285%5Ctimes%20%5CDelta%20H_f_%7B%28O_2%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(4\times (91.3))+(6\times (-241.8))]-[(4\times (-45.9))+(5\times (0))]\\\\\Delta H_{rxn}=-902kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%284%5Ctimes%20%2891.3%29%29%2B%286%5Ctimes%20%28-241.8%29%29%5D-%5B%284%5Ctimes%20%28-45.9%29%29%2B%285%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-902kJ)
Hence, the enthalpy of the reaction is coming out to be -902 kJ.
8A+2B——> 6C
since you multiply by a factor of 2 you do that to each letter
4*2=8
1*2=2
3*2=6
Answer:
The initial temperature was 58.4°C
Explanation:
Given the following data:
initial volume = V₁ = 380 mL = 0.38 L
final volume = V₂ = 250 mL = 0.25 L
final temperature = T₂ = -55°C = 218 K
According to Charles's law, the volume of a gas is <em>directly proportional to the temperature</em> (in Kelvin). The mathematical expression is:
V₁/T₁= V₂/T₂
So, we calculate the initial temperature (V₁) as follows:
T₁ = T₂/V₂ x V₁ = 218 K/(0.25 L) x 0.38 L = 331.36 K ≅ 331.4 K
Finally, we convert the initial temperature from K to °C:
T₁= 331.4 K - 273 = 58.4°C