Answer:
A. 200 J
Explanation:
The initial kinetic energy depends on the initial speed, while the gravitational potential energy depends on the height, both balls are thrown with the same initial speed and from the same height. Therefore, due to the law of conservation of energy, the balls must have the same mechanical energy (the sum of both energies) when both impact the ground. Since the potential energy is zero at this point, its final kinetic energy must also be the same.
<u>Answer:</u>
Force = 20N
acceleration (a) = 1.5 m/s²
Mass of object (m) = ?
<u>From Newtons II law</u>
<em> F = m. a N</em>
m = F/a
m = 20/1.5
<em> m = 13.34 Kg</em>
<em>Mass of an object is 13.34 Kg</em>
Explanation:
Initial energy = final energy + work done by friction
PE = PE + KE + W
mgH = mgh + 1/2 mv² + W
(800)(9.8)(30) = (800)(9.8)(2) + 1/2 (800) v² + 25000
v = 22.1 m/s
Without friction:
PE = PE + KE
mgH = mgh + 1/2 mv²
(800)(9.8)(30) = (800)(9.8)(2) + 1/2 (800) v²
v = 23.4 m/s
The answer would 0. The reasoning of this is because freezing point in celsius is always 0 degrees but in fahrenheit the freezing point is 32 degrees.