Answer:
94 kg
Explanation:
The mass registered by the scale is based on the assumption that the force applied is due entirely to gravity. If the force is greater, then the indicated mass will be greater.
__
<h3>how many g's</h3>
As a fraction of the acceleration of gravity, the elevator's acceleration is ...
(1.2 m/s²)/(9.8 m/s²) ≈ 6/49
<h3>net force</h3>
The force required to produce a given acceleration is found by the formula ...
F = ma . . . . . . . force on mass m to produce acceleration 'a'
When the man is stationary on the scale, the upward force it supplies is balanced by the downward force on the man due to gravity. The force and the mass are proportional, and the constant of proportionality (the acceleration due to gravity) is used to calibrate the scale. More force is thus translated to a higher mass reading.
Since the man's net acceleration is upward at the rate of 6/49×g, the total force applied by the scale is (1 +6/49) = 55/49 times as great as when the man is stationary. This greater force gets translated to a greater mass reading.
The force is equivalent to what would be required to support a stationary man with a mass of ...
(84 kg)(55/49) = 94 2/7 kg
The scale would read about 94 kg during the upward acceleration period.
Answer:
(a) Relative speed of Sam = -7 mph
(b) Relative speed of George = 7 mph
Explanation:
We have given speed of Sam 65 mph in north direction.
And speed of George is 72 mph also in north direction
We have find the relative velocity of both Sam and George
(a) Speed of Sam relative to George = speed of Sam - speed of George = 65 -72 = -7 mph
(b) Speed of George with respect to Sam = speed of George - speed of Sam = 72-65 = 7 mph
Complete Question:
Two small objects each with a net charge of Q (where Q is a positive number) exert a force of magnitude "F" on each other. We
replace one of the objects with another whose net charge is 4Q. The original magnitude of the force on the Q charge was "F"; what is the magnitude of the force on the Q charge now?
Answer:
4 F₀
Explanation:
Assuming that we can treat to both objects as point charges, we can find the force "F" that one charge exerts upon the other applying Coulomb´s law, as follows:
F₀ = K*Q₀² / r₁₂²
If we replace one of the charges by one with a 4Q₀ charge, the new value of F will be as follows:
F₁ = K*Q₀*4Q₀ / r₁₂² =( K*Q₀² / r₁₂²)* 4 = 4* F₀
This value is reasonable, as the electrostatic force is a linear - type one, so it is possible to use the superposition principle (we can get the force exerted by one charge on another without considering the ones due to another charges)
We have: K.E. = mv² / 2
here, m = 4 Kg
v = 9 m/s
Substitute their values into the expression:
K.E. = (4)(9)² / 2
K.E. = (4)(81) / 2
K.E. = 324 / 2
K.E. = 162 Joules
In short, Your Answer would be 162 J
Hope this helps!
The change in speed of this object is 3m/s
According to Newton's second law;
F = ma
F = mv/t
Given the following parameters
Force F = 8.0N
mass m = 16kg
time t = 4.0s
Required
speed v
Substitute the given parameters into the formula
v = Ft/m
v = 8 * 6/16
v = 48/16
v = 3m/s
Hence the change in speed of this object is 3m/s
Learn more here: brainly.com/question/19072061