Answer:
picture not bright
Explanation:
please a brainliest for tge feedback
Answer:
The standard potential, E cell, for this galvanic cell is 0.5670V
Explanation:
Ni²⁺(aq) + 2e⁻ → Ni(s) E red = - 0.23V ANODE
Cu²⁺(aq) + 2e- → Cu(s) E red = + 0.337V CATHODE
ΔE° = E cathode - E anode
ΔE° = 0.337V - (0.23V) = 0.5670 V
Answer:
pH = 5.54
Explanation:
The pH of a buffer solution is given by the <em>Henderson-Hasselbach (H-H) equation</em>:
- pH = pKa + log
![\frac{[CH_3COO^-]}{[CH_3COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_3COO%5E-%5D%7D%7B%5BCH_3COOH%5D%7D)
For acetic acid, pKa = 4.75.
We <u>calculate the original number of moles for acetic acid and acetate</u>, using the <em>given concentrations and volume</em>:
- CH₃COO⁻ ⇒ 0.377 M * 0.250 L = 0.0942 mol CH₃COO⁻
- CH₃COOH ⇒ 0.345 M * 0.250 L = 0.0862 mol CH₃COOH
The number of CH₃COO⁻ moles will increase with the added moles of KOH while the number of CH₃COOH moles will decrease by the same amount.
Now we use the H-H equation to <u>calculate the new pH</u>, by using the <em>new concentrations</em>:
- pH = 4.75 + log
= 5.54
Answer:
Pretty sure the answer is A on Plato
Explanation:
I looked it up, and it said that raising the temperature would cause the equilibrium to shift left.
The AP Biology teacher is measuring out 638.0 g of dextrose (C6H12O6) for a lab the moles of dextrose is this equivalent to is 3.6888 moles.
<h3>What are moles?</h3>
A mole is described as 6.02214076 × 1023 of a few chemical unit, be it atoms, molecules, ions, or others. The mole is a handy unit to apply due to the tremendous variety of atoms, molecules, or others in any substance.
To calculate molar equivalents for every reagent, divide the moles of that reagent through the moles of the restricting reagent. The calculation is follows:
- 655/12 x 6 + 12+ 16 x 6
- = 655/ 180 = 3.6888 moles.
Read more about moles:
brainly.com/question/24322641
#SPJ1