The reaction
→
is best classified as double displacement reaction.
Those reaction in which two compounds react by exchanges of ions to form two new compounds is called double displacement reaction. The easiest way to identify double displacement reactions is to check to see whether the cations exchanged anions with each other or not . Always balanced chemical equation is used to determine.
There are three types of double displacement reaction which is given as,
- Precipitation
- Neutralization
- Gas formation
The real world example of double displacement reaction is combining vinegar and baking soda to create homemade volcano.
learn more about double displacement reaction
brainly.com/question/13870042?
#SPJ4
Answer:
Noble gases are a unique set of elements in the periodic table because they don't naturally bond with other elements.
Explanation:
HAVE A GOOD DAY!
Only the first word in an organism's complete scientific name has its first letter capitalized.
When writing out the organism's scientific name, it goes Genus and then species. The Genus is always capitalized and species is always lowercase. Also when writing the name, usually you either write it in italics or underline the scientific name.
<h3>
Answer:</h3>
16.7 g H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2NaOH (s) + CO₂ (g) → Na₂CO₃ (s) + H₂O (l)
[Given] 1.85 mol NaOH
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol NaOH → 1 mol H₂O
Molar Mass of H - 1.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
16.6685 g H₂O ≈ 16.7 g H₂O
Answer:
Correct option is
B
5 liters of CH
4
(g)NO
2
at STP
No. of molecules=
22.4
5
mol=
22.4
5
×N
A
molecules
A) 5ℊ of H
2
(g)
No. of moles=
2
5
mol=
2
5
×N
A
molecules
B) 5l of CH
4
(g)
No. of moles of CH
4
=
22.4
5
mol=
22.4
5
N
A
molecules
C) 5 mol of O
2
=5N
A
O
2
molecules
D) 5×10
23
molecules of CO
2
(g)
Molecules of 5l NO
2
(g) at STP=5l of CH
4
(g) molecules at STP
Therefore, option B is correct.