Answer:
the black points on the top right marked with the letters are the answers
Hope it Helps
 
        
             
        
        
        
Answer:
40
Step-by-step explanation:
<h3>6×40⇒240</h3>
 
        
             
        
        
        
Answer: B 192
Step-by-step explanation: In the picture attached, the complete question is shown.
The humpback whale traveled 2240 miles in 28 days. This makes the following rate:
rate = distance/time = 2240/28 = 80 miles/day
The distance traveled at this rate in 32 days is:
distance = rate * time = 80*32 = 2560 miles
The gray whales traveled 2368 miles in 32 days. Then, the humpback whales would have traveled 2560 - 2368 = 192 miles more than the gray whales.
 
        
                    
             
        
        
        
well, we know the sine, and we also know that we're on the II Quadrant, let's recall that on the II Quadrant sine is positive whilst cosine is negative.
![\bf sin^2(\theta)+cos^2(\theta)=1~\hspace{10em} tan(\theta )=\cfrac{sin(\theta )}{cos(\theta )} \\\\[-0.35em] ~\dotfill\\\\ sin^2(a)+cos^2(a)=1\implies cos^2(a) = 1-sin^2(a) \\\\\\ cos^2(a) = 1-[sin(a)]^2\implies cos^2(a) = 1-\left( \cfrac{3}{4} \right)^2\implies cos^2(a) = 1-\cfrac{3^2}{4^2} \\\\\\ cos^2(a) = 1-\cfrac{9}{16}\implies cos^2(a) = \cfrac{7}{16}\implies cos(a)=\pm\sqrt{\cfrac{7}{16}}](https://tex.z-dn.net/?f=%5Cbf%20sin%5E2%28%5Ctheta%29%2Bcos%5E2%28%5Ctheta%29%3D1~%5Chspace%7B10em%7D%20tan%28%5Ctheta%20%29%3D%5Ccfrac%7Bsin%28%5Ctheta%20%29%7D%7Bcos%28%5Ctheta%20%29%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20sin%5E2%28a%29%2Bcos%5E2%28a%29%3D1%5Cimplies%20cos%5E2%28a%29%20%3D%201-sin%5E2%28a%29%20%5C%5C%5C%5C%5C%5C%20cos%5E2%28a%29%20%3D%201-%5Bsin%28a%29%5D%5E2%5Cimplies%20cos%5E2%28a%29%20%3D%201-%5Cleft%28%20%5Ccfrac%7B3%7D%7B4%7D%20%5Cright%29%5E2%5Cimplies%20cos%5E2%28a%29%20%3D%201-%5Ccfrac%7B3%5E2%7D%7B4%5E2%7D%20%5C%5C%5C%5C%5C%5C%20cos%5E2%28a%29%20%3D%201-%5Ccfrac%7B9%7D%7B16%7D%5Cimplies%20cos%5E2%28a%29%20%3D%20%5Ccfrac%7B7%7D%7B16%7D%5Cimplies%20cos%28a%29%3D%5Cpm%5Csqrt%7B%5Ccfrac%7B7%7D%7B16%7D%7D)
![\bf cos(a)=\pm\cfrac{\sqrt{7}}{\sqrt{16}}\implies cos(a)=\pm\cfrac{\sqrt{7}}{4}\implies \stackrel{\textit{on the II Quadrant}}{cos(a)=-\cfrac{\sqrt{7}}{4}}\\\\[-0.35em]~\dotfill\\\\tan(a)=\cfrac{sin(a)}{cos(a)}\implies tan(a)=\cfrac{~~\frac{3}{4}~~}{-\frac{\sqrt{7}}{4}}\implies tan(a)=\cfrac{3}{4}\cdot \cfrac{4}{-\sqrt{7}}\\\\\\tan(a)=-\cfrac{3}{\sqrt{7}}\implies \stackrel{\textit{rounded up}}{tan(a) = -1.13}](https://tex.z-dn.net/?f=%5Cbf%20cos%28a%29%3D%5Cpm%5Ccfrac%7B%5Csqrt%7B7%7D%7D%7B%5Csqrt%7B16%7D%7D%5Cimplies%20cos%28a%29%3D%5Cpm%5Ccfrac%7B%5Csqrt%7B7%7D%7D%7B4%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bon%20the%20II%20Quadrant%7D%7D%7Bcos%28a%29%3D-%5Ccfrac%7B%5Csqrt%7B7%7D%7D%7B4%7D%7D%5C%5C%5C%5C%5B-0.35em%5D~%5Cdotfill%5C%5C%5C%5Ctan%28a%29%3D%5Ccfrac%7Bsin%28a%29%7D%7Bcos%28a%29%7D%5Cimplies%20tan%28a%29%3D%5Ccfrac%7B~~%5Cfrac%7B3%7D%7B4%7D~~%7D%7B-%5Cfrac%7B%5Csqrt%7B7%7D%7D%7B4%7D%7D%5Cimplies%20tan%28a%29%3D%5Ccfrac%7B3%7D%7B4%7D%5Ccdot%20%5Ccfrac%7B4%7D%7B-%5Csqrt%7B7%7D%7D%5C%5C%5C%5C%5C%5Ctan%28a%29%3D-%5Ccfrac%7B3%7D%7B%5Csqrt%7B7%7D%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7Btan%28a%29%20%3D%20-1.13%7D)