Answer:
C and D
Explanation:
Atoms with five, six or seven valance electrons gain electrons to complete the octet because it is more convenient for the atoms to gain three, two or one electron as compared to lose five, six or seven electrons. Thus atoms with five, six or seven valance electrons form negative ions by gaining electrons.
Atoms with one, two or three valance electrons lose the electrons to get complete octet because it is more convenient for the atoms to lose one two or three electrons as compared to gain the seven, six or five electrons. The atoms with one, two or three valance electrons form positive ions.
Answer:
=3 means is 3 or greater so that would be f and g subshells
=0 means is 0 or greater so that would be s, p, d, f and g subshells
=1 means is 1 or greater so that would be p, d, f, and g subshells
=4 means is 4 or greater so that would be g only
Answer:
<u></u>
Explanation:
<u>1. Balanced molecular equation</u>

<u>2. Mole ratio</u>

<u>3. Moles of HNO₃</u>
- Number of moles = Molarity × Volume in liters
- n = 0.600M × 0.0100 liter = 0.00600 mol HNO₃
<u>4. Moles Ba(OH)₂</u>
- n = 0.700M × 0.0310 liter = 0.0217 mol
<u>5. Limiting reactant</u>
Actual ratio:

Since the ratio of the moles of HNO₃ available to the moles of Ba(OH)₂ available is less than the theoretical mole ratio, HNO₃ is the limiting reactant.
Thus, 0.006 moles of HNO₃ will react completely with 0.003 moles of Ba(OH)₂ and 0.0217 - 0.003 = 0.0187 moles will be left over.
<u>6. Final molarity of Ba(OH)₂</u>
- Molarity = number of moles / volume in liters
- Molarity = 0.0187 mol / (0.0100 + 0.0031) liter = 0.456M
Answer:
<u>Heating water with an open flame</u>
<u>Explanation:</u>
Remember, we are told in the label that Acetone is a "flammable liquid and vapor." <em>Being flammable means the substance can easily be set on fire</em>, and we would expect an open flame from heating water to trigger an explosion (a disaster) in which the Acetone is set on fire causing life-threatening dangers to the second group of students.