Given:
F = 39 N, the force applied
t = 2 s, the time interval in which the force is applied.
By definition, the impulse is

Answer: 78 N-s
Answer:
The current in the circuit at a time interval of τ seconds after the switch has been closed is 0.123 A
Explanation:
The time constant for an R and C in series circuit is given by τ = RC.
R = 3000 ohms, C = 0.5 × 10⁻⁶ F = 5.0 × 10⁻⁷ F
τ = 3000 × 5 × 10⁻⁷ = 0.015 s
The voltage across a capacitor as it charges is given be
V(t) = Vs (1 - e⁻ᵏᵗ)
where k = 1/τ
At the point when t = τ, the expassion becomes
V(t = τ) = 1000 (1 - e⁻¹) = 0.632 × 1000 = 632 V
Current flows as a result of potential difference,.
Current in the circuit at this time t = τ is given by
I = (Vs - Vc)/R
Vs = source voltage = 1000 V
Vc = Voltage across the capacitor = 632 V
R = 3000 ohms
I = (1000 - 632)/3000 = 0.123 A
Answer:
a) v = 1524.7 m/s
b) T = 8.47*10^-4 s
λ = 1.29 m
Explanation:
a) First, in order to calculate the speed of the sound wave, you take into account that the velocity is constant, then, you use the following formula:

d: distance traveled by the sound wave, which is twice the distance to the ocean bottom = 2*324 m = 648 m
t: time that sound wave takes to return to the sub = 0.425

hence, the speed of the sound wave is 1524.7 m/s
b) Next, with the value of the velocity of the wave you can calculate the wavelength of the wave, by using the following formula:

f: frequency = 1.18*10^3 Hz

And the period is:

hence, the wavelength and period of the sound wave is, respectively, 1.29m and 8.47*10^-4 s