1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amanda [17]
3 years ago
12

How does energy from an ocean wave power stuff in a house?

Physics
1 answer:
Gala2k [10]3 years ago
6 0
<span>The density of the energy that is transported under the waves under the ocean surface is about five times higher compared to the wind energy 20 meter (about 65 feet) above.  In other words, the amount of energy in a single wave is very high. However it turns out that when they tried to make the high power of the waves to power things in a house it only made it past the first few stages there were very few that made it to some stages. This started taking place in around 2001. hope this helped if not let me know and i could explain more:)

</span>
You might be interested in
FIGURE 2 shows a 1.5 kg block is hung by a light string which is wound around a smooth pulley of radius 20 cm. The moment of ine
Sindrei [870]

Answer:

At t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

Explanation:

First, we consider all the forces acting on the pulley.

There is only one force acting on the pulley, and that is due to the 1.5 kg mass attached to it.

Therefore, the torque on the pulley is

\tau=Fd=mg\cdot R

where m is the mass of the block, g is the acceleration due to gravity, and R is the radius of the pulley.

Now we also know that the torque is related to angular acceleration α by

\tau=I\alpha

therefore, equating this to the above equation gives

mg\cdot R=I\alpha

solving for alpha gives

\alpha=\frac{mgR}{I}

Now putting in m = 1.5 kg, g = 9.8 m/s^2, R = 20 cm = 0.20 m, and I = 2 kg m^2 gives

\alpha=\frac{1.5\cdot9.8\cdot0.20}{2}\boxed{\alpha=1.47s^{-2}}

Now that we have the value of the angular acceleration in hand, we can use the kinematics equations for the rotational motion to find the angular velocity and the number of revolutions at t = 4.2 s.

The first kinematic equation we use is

\theta=\theta_0+\omega_0t+\frac{1}{2}\alpha t^2

since the pulley starts from rest ω0 = 0 and theta = 0; therefore, we have

\theta=\frac{1}{2}\alpha t^2

Therefore, ar t = 4.2 s, the above gives

\theta=\frac{1}{2}(1.47)(4.2)^2

\boxed{\theta=12.97}

So how many revolutions is this?

To find out we just divide by 2 pi:

\#\text{rev}=\frac{\theta}{2\pi}=\frac{12.97}{2\pi}\boxed{\#\text{rev}=2.06}

Or about 2 revolutions.

Now to find the angular velocity at t = 4.2 s, we use another rotational kinematics equation:

\omega^2=w^2_0+2\alpha(\Delta\theta)_{}

Since the pulley starts from rest, ω0 = 0. The change in angle Δθ we calculated above is 12.97. The value of alpha we already know to be 1.47; therefore, the above becomes:

\omega^2=0+2(1.47)(12.97)w^2=38.12\boxed{\omega=6.17.}

Hence, the angular velocity at t = 4.2 w is 6. 17 rad / s

To summerise:

at t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

3 0
1 year ago
8. How is the crystal size different for extrusive and intrusive igneous rocks?
eduard
<span>Igneous rocks which form by the crystallization of magma at a depth within the Earth are called intrusive rocks. Intrusive rocks are characterized by large crystal sizes, i.e., their visual appearance shows individual crystals interlocked together to form the rock mass.  hope that helped</span>
7 0
3 years ago
You pull straight up on the string of a yo-yo with a force 0.35 N, and while your hand is moving up a distance 0.16 m, the yo-yo
jarptica [38.1K]

Answer:

a) 0.138J

b) 3.58m/S

c) (1.52J)(I)

Explanation:

a) to find the increase in the translational kinetic energy you can use the relation

\Delta E_k=W=W_g-W_p

where Wp is the work done by the person and Wg is the work done by the gravitational force

By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

Wp=(0.35N)(0.16m)=0.056J\\\\Wg=(0.062kg)(9.8\frac{m}{s^2})(0.32m)=0.19J\\\\\Delta E_k=W=0.19J-0.056J=0.138J

the change in the translational kinetic energy is 0.138J

b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

\Delta E_k=\frac{1}{2}mv_f^2-\frac{1}{2}mv_o^2

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

v_f=\sqrt{\frac{2}{m}}\sqrt{\Delta E_k+(1/2)mv_o^2}\\\\v_f=\sqrt{\frac{2}{0.062kg}}\sqrt{0.138J+1/2(0.062kg)(2.9m/s)^2}=3.58\frac{m}{s}

the new speed is 3.58m/s

c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

\frac{E_{fr}}{E_{fr}}=\frac{1/2I\omega_f^2}{1/2I\omega_o^2}=\frac{\omega_f^2}{\omega_o^2}\\\\\omega_f=\frac{v_f}{r}\\\\\omega_o=\frac{v_o}{r}\\\\\frac{E_{fr}}{E_{fr}}=\frac{v_f^2}{v_o^2}=\frac{(3.58m/s)}{(2.9m/s)^2}=1.52J

hence, the change in Er is about 1.52J times the initial rotational energy

5 0
3 years ago
Read 2 more answers
A stone is dropped from from rest at the top of a mine shaft. It takes 95 seconds for the stone to fall to the bottom of the min
Marianna [84]

Distance of fall from rest,
without air resistance              =  (1/2) (gravity) (time)²

                                             = (1/2) (9.8 m/s²) (95 sec)²

                                             =  (4.9 m/s²) (9,025 sec²)

                                             =        44,222.5 meters  .

The depth of the mine shaft is five times the height of Mt. Everest !


6 0
3 years ago
Light of wavelength 597 nm falls on a double slit, and the first bright fringe of the interference pattern is seen at an angle o
Kazeer [188]

Answer:

2.2 µm

Explanation:

For constructive interference, the expression is:

d\times sin\theta=m\times \lambda

Where, m = 1, 2, .....

d is the distance between the slits.

Given wavelength = 597 nm

Angle, \theta  = 15.8°

First bright fringe means , m = 1

So,

d\times sin\ 15.8^0=1\times \597\ nm

d\times 0.2723=1\times \597\ nm

d=2192.43481\ nm

Also,

1 nm = 10⁻⁹ m

1 µm = 10⁻⁶ m

So,

1 nm = 10⁻³ nm

Thus,

<u>Distance between slits ≅ 2.2 µm</u>

8 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following mechanical waves has the most energy?
    12·1 answer
  • A force of 20 N acts on a rocket for 350 s, causing the rocket's velocity to increase. Calculate the impulse of the force and by
    7·1 answer
  • The spreading of waves behind an aperture is more for long wavelengths and less for short wavelengths.Less for long wavelengths
    10·1 answer
  • Sam is walking through the park. He hears a police car coming down the street toward him. What happens to the sound of the siren
    13·2 answers
  • The empire state building is 1,450 feet tall. King Kong weighs 20 tons and he climbs to the very top. If he jumps off the top, w
    8·1 answer
  • A race car travels a circular track at an average rate of 135 mi/hr. The radius of the track is 0.450 miles. What is the centrip
    7·2 answers
  • 1. The photon energy for light of wavelength 500 nm is approximately (Show your work).
    9·1 answer
  • Two current-carrying wires are exactly parallel to one another and both carry 2.5A of current. The two wires are separated by a
    15·1 answer
  • At 5.0 minutes, the temperature of the water reaches 100 °C. The volume of the water in the urn
    11·1 answer
  • The pressure at the bottom of a jug filled with water does NOT depend on the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!