I'm going to assume that they are on parallel tracks, and not the same track.
60x=40(x+2)
60x=40x+80
20x=80
x=4
You can check the work I've provided by filling in the answer for x into the initial question.
ʕ·ᴥ·ʔ
Answer: none
Step-by-step explanation:
(A)
(16÷32/10) ×2 + 0.2×(90)
Using bodmas principle ; solve bracket
(16×10/32)×2 + (2/10×90)
10+18 =28
(B)
{(16÷32/10) × (2+2/10)} ×90
Open brackets
{(16×10/32) × (22/10)} ×90
(5×11/5) ×90
11×90 = 990
(C)
16÷{(32/10×2) + (2/10×8)} +82
Open brackets, solve division first, dolled by addition
16÷(32/5 + 8/5) +82
16÷(40/5) +82
16÷8 +82
2+82= 84
(D)
[16÷(32/10 ×2) + 0.2× (90)]
16÷ (32/5) + 2/10 ×90
Solve division
16×5/32 + 18
5/2 + 18
L.c.m of denominator (2&1) =2
(5+36) / 2 = 41/2
=20.5
JIG is clockwise around the figure, as is DEF, so there is no reflection involved. The midpoint between any two corresponding vertices is (1, 4), so that is the center of rotation. Figure DEF is "upside down" from JIG, so rotation is 180°.
The 1st selection is appropriate.
35.5 ft is the width of the room
Answer: 4 times
Step-by-step explanation:
2.50 x 4 = 10
I tried different numbers