Answer:
1250
Explanation:
Let's look at this in a simple manner, because it is.
The crane weights 250Kg. Okay.
Since it is hung, there is the acceleration of gravity being applied on it (10m/s²)
Since F = m * a
F = 250 * 10
F = 2500
Now we know that the downward Force is 2500N.
To find the force that is being applied on that 30° angle, we can multiply our 2500N by cos30°, which happens to be
.
Therefore, the force pulling the box in the cable's direction is:

<em />
<em>If you have any questions feel free to comment.</em>
<em />
<em>Have a great one and mark brainliest if it helped, please</em>
Complete question is The frequency of the fundamental of the guitar string is 320 Hz. At what speed c do waves move along that string? wavelength is 40 cm.
Answer:
128 m/s
Explanation:
In case where fundamental frequency is given, the speed with waves travel along the string can be calculated using the following formula:
v = f (2L) where L is the length of the string (L = λ/2)
⇒v= f λ
f = 320 Hz (given)
λ = 40 cm = 0.40 m
Substitute the values:
⇒ v = 320 Hz × 0.40 m= 128 m/s
Answer:
The speed of the knife after passing through the target is 9.33 m/s.
Explanation:
We can find the speed of the knife after the impact by conservation of linear momentum:


Where:
: is the mass of the knife = 22.5 g = 0.0225 kg
: is the mass of the target = 300 g = 0.300 kg
: is the initial speed of the knife = 40.0 m/s
: is the initial speed of the target = 2.30 m/s
: is the final speed of the knife =?
: is the final speed of the target = 0 (it is stopped)
Taking as a positive direction the direction of the knife movement, we have:

Therefore, the speed of the knife after passing through the target is 9.33 m/s.
I hope it helps you!
The kinetic energy increase because as temperature warms up particles move faster
Answer:
S.H.M:- If the acceleration of the vibrating body directly varies with the displacement of the body from the mean position and always directed to the mean position, the motion of that body is called simple harmonic motion.
Ex:- (i) The motion of a pendulum is an S.H.M.
(ii) The motion of vibrating mass attached to a spring is an S.H.M.