Answer:
a.
b.1058 N
Explanation:
We are given that
Mass of each dog,M=18.5 kg
Mass of sled with rider,m=250 kg
a.Average force,F=185 N


By Newton's second law



b.By Newton's second law

Substitute the values

Hence, the force in the coupling between the dogs and the sled=1058 N
(a) The horizontal and vertical components of the ball’s initial velocity is 37.8 m/s and 12.14 m/s respectively.
(b) The maximum height above the ground reached by the ball is 8.6 m.
(c) The distance off course the ball would be carried is 0.38 m.
(d) The ball's velocity after 2.0 seconds if there is no crosswind is 38.53 m/s.
<h3>
Horizontal and vertical components of the ball's velocity</h3>
Vx = Vcosθ
Vx = 39.7 x cos(17.8)
Vx = 37.8 m/s
Vy = Vsin(θ)
Vy = 39.7 x sin(17.8)
Vy = 12.14 m/s
<h3>Maximum height reached by the ball</h3>

Maximum height above ground = 7.51 + 1.09 = 8.6 m
<h3>Distance off course after 2 second </h3>
Upward speed of the ball after 2 seconds, V = V₀y - gt
Vy = 12.14 - (2x 9.8)
Vy = - 7.46 m/s
Horizontal velocity will be constant = 37.8 m/s
Resultant speed of the ball after 2 seconds = √(Vy² + Vx²)

<h3>Resultant speed of the ball and crosswind</h3>

<h3>Distance off course the ball would be carried</h3>
d = Δvt = (38.72 - 38.53) x 2
d = 0.38 m
The ball's velocity after 2.0 seconds if there is no crosswind is 38.53 m/s.
Learn more about projectiles here: brainly.com/question/11049671
Answer:

Explanation:
As per Kepler's III law we know that time period of revolution of satellite or planet is given by the formula

now for the time period of moon around the earth we can say

here we know that


= mass of earth
Now if the same formula is used for revolution of Earth around the sun

here we know that


= mass of Sun
now we have




heat from water goes into air in ball
air expands
ping goes the dent
Explanation:
<em>a)Which of the two has uniform acceleration?</em>
Acceleration is the second derivative of position. The acceleration of the first particle is:
x = 4t² − 2t
v = 8t − 2
a = 8
The acceleration of the second particle is:
x = 6t³ + 8t
v = 18t² + 8
a = 36t
The first particle has uniform acceleration.
<em>b)Which one is likely to come to rest at some time during its motion?</em>
The particles come to rest when v = 0. The first particle's velocity has a real zero at t = 4. The second particle's velocity has only imaginary zeros, meaning v is never 0.