Answer:
A. As the ropes are horizontal the child has travelled 2m of vertical displacement from his lowest position.
Gpe @ A=mgh=40*9.81*2=784.8J
B. At 30degree vertical angle the vertical displacement from lowest position is given by
2-2cos(30)=2-1.73=0.27m
Gpe @B= 40*9.81*0.27=106 J
C: at the bottom of circular arc it's Gpe is zero relative to lowest position as bottom of arc itself is lowest position.
If the force were constant or increasing, we could guess that the speed of the sardines is increasing. Since the force is decreasing but staying in contact with the can, we know that the can is slowing down, so there must be friction involved.
Work is the integral of (force x distance) over the distance, which is just the area under the distance/force graph.
The integral of exp(-8x) dx that we need is (-1/8)exp(-8x) evaluated from 0.47 to 1.20 .
I get 0.00291 of a Joule ... seems like a very suspicious solution, but for an exponential integral at a cost of 5 measly points, what can you expect.
On the other hand, it's not really too unreasonable. The force is only 0.023 Newton at the beginning, and 0.000067 newton at the end, and the distance is only about 0.7 meter, so there certainly isn't a lot of work going on.
The main question we're left with after all of this is: Why sardines ? ?
This is not a answer but can’t you just search that up on the internet and get the answer?
Answer:
<em>Well, I think the best answer will be is </em><em>B) Gravity. Good luck!</em>
We know that centripetal acceleration is nothing but the ratio of the square of the tangential velocity to that of the radius vector.
a=v*v/r=ωωrr/r
=ωωr
=2πf2πfr
=2π2πr/TT
=97m/secsec