<span>1.) It is 6.00km from your home to the physics lab. As part of your physical fitness program, you could run that distance at 10.0km/hr (which uses up energy at the rate of 700W ), or you could walk it leisurely at 3.00km/hr (which uses energy at 290 W).
A.)Which choice would burn up more energy?
running or walking?
b.)How much energy (in joules) would it burn?
c.)Why is it that the more intense exercise actually burns up less energy than the less intense one?
Follow 2 answers Report Abuse
Answers
billrussell42
Best Answer: running, at 10 km/hour for 6 km is
6 km / 10 km/hour = 0.6 hour or 36 min
energy used is 700 watts or 700 joules/s x 36 min x 60s/min = 1.512e6 joules or 1.5 MJ
walking, at 3 km/hour for 6 km
6 km / 3 km/hour = 2 hour or 120 min
energy used is 290 watts or 290 joules/s x 120 min x 60s/min = 1.872e6 joules or 1.8 MJ
C) should be obvious
PS, this has nothing to do with potential energy.
billrussell42 · 5 years ago
0 Thumbs up 1 Thumbs down Report Abuse Comment
Simon van Dijk
I assume the watt consumption is per hour. Then running 6km at 10.0 km/h results in 700*6/10 = 420 w.h and walking in 290*6/3 = 580 w.h So walking would burn up more energy (kwh)
b) 1 kilowatt hour = 3 600 000 joules
so 420 wh = 0.42 kwh = 1.51.10^6 joule
c) when you put more effort in making the distance your energy is used more efficient.
Simon van Dijk · 5 years ago
0 Thumbs up 2 Thumbs down Report Abuse Comment</span>
Gravitational potential energy is equal to force times height. That's 30 x 2 = 60 Joules. It makes no difference how fast or how slow you do the lift.
Answer:
Explanation:
Using the law of conservation of momentum;

here;
There is a need for conservation of the total momentum that occurred before and after the collision.
So;
= mass of cart X
= mas 9f cart Y
= velocity of cart X (before collision)
= velocity of cart Y (before collision)
= velocity of cart X (after collision)
= velocity of cart Y (after collision)
So;

because the mass is identical and v represents the velocity of both carts.
Now;
= 2 m/s
= 0 ( at rest)
∴
m(2) = (2m)v
v = 1 m/s
Thus, we can see from the graphical image attached below that the velocity of X reduces to 1 m/s after collision with cart Y.
Answer:
Speed will be 30810 rpm
Explanation:
We have given diameter of the tire d = 24 inch
So radius 
We have given linear velocity v = 35 mph
We know that linear velocity is given by 


As we know that 1 mile = 63360 inch and 1 hour = 60 min