A yo-yo swung in a circle.
As you increase the temperature, the matter begins to expand. Due to this, the distance between matter particles decreases and they are no more compact. Hence, density decreases.
Answer:
Gravitational energy
Explanation:
when over head , when it hits the floor thermal energy
Answer:
a) 2.5 m/s²
b) 6.12 m/s
Explanation:
Tension of rope = T = 356N
Weight of material = W = 478 N
Distance from the ground = s = 7.5 m
Acceleration due to gravity = g = 9.81 m/s²
Mass of material = m = 478/9.81 = 48.72
Final velocity before the bundle hits the ground = v
Initial velocity = u = 0
Acceleration experienced by the material when being lowered = a
a) W-T = ma
⇒478-356 = 48.72×a

⇒a = 2.5 m/s²
∴ Acceleration achieved by the material is 2.5 m/s²
b) v²-u² = 2as
⇒v²-0 = 2×2.5×7.5
⇒v² = 37.5
⇒v = 6.12 m/s
∴ Velocity of the material before hitting the ground is 6.12 m/s
Since the electron dropped from an energy level i to the ground state by emitting a single photon, this photon has an energy of 1.41 × 10⁻¹⁸ Joules.
<h3>How to calculate the photon energy?</h3>
In order to determine the photon energy of an electron, you should apply Planck-Einstein's equation.
Mathematically, the Planck-Einstein equation can be calculated by using this formula:
E = hf
<u>Where:</u>
In this scenario, this photon has an energy of 1.41 × 10⁻¹⁸ Joules because the electron dropped from an energy level i to the ground state by emitting a single photon.
Read more on photons here: brainly.com/question/9655595
#SPJ1