To start to solve this problem, we need to know what vertex form is. The vertex form of a parabola is. The vertex form of a parabola is a(x-h) + k, where k is the vertical shift, h is the horizontal shift, and a is the value that tells the stretch.
To start to solve this equation, we want to start to create a difference of two squares.
y = 2(x²+
x) We do this step to make the x² have a coefficient of 1
Now, we want to complete the square. To complete the square, we take 1/2 of the coefficient of x, and then square that.
1/2 * 1/2 = 1/4, and 1/4²=1/16
That means that we need to add 1/16 inside and outside the parenthesis.
We get:
y = 2(x²+1/2x + 1/16) - 1/16*2
We do -1/16*2 on the outside because since we added it inside the parenthesis, we need to take it away somewhere else (if that makes sense). The two is there because there is a two in front of the parenthesis.
We get:
y = 2(x+1/4)² - 1/8, by completing the square and simplifying, and this is the final answer.
ignore this my answer was wrong . Sorry
Answer:
145
Step-by-step explanation:
Because that angle(C) is sum of the A & B. ✌️
The speed of the current in a river is 6 miles per hour
<em><u>Solution:</u></em>
Given that,
Speed of boat in still water = 20 miles per hour
Time taken = 3 hours
Distance downstream = 78 miles
To find: Speed of current
<em><u>If the speed of a boat in still water is u km/hr and the speed of the stream is v km/hr, then: </u></em>
Speed downstream = (u + v) km/hr
Speed upstream = (u - v) km/hr
<em><u>Therefore, speed downstream is given as:</u></em>

We know that,
Speed downstream = (u + v)
26 = 20 + v
v = 26 - 20
v = 6 miles per hour
Thus speed of the current in a river is 6 miles per hour
Answer:
The expected revenue of an airline ticket sold by this travel website is $408
Step-by-step explanation:
For the revenues per ticket we have;
airline A; 600
airline B; 360
For the probability of choosing the airlines we have;
airline A; 20% = 0.2
airline B; 80% = 0.8
Therefore, the expected revenue of an airline ticket sold by this travel website is;
600(0.2) + 360(0.8) = 408
Therefore, the expected revenue of an airline ticket sold by this travel website is $408