1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Colt1911 [192]
3 years ago
11

Can some find the the answer than explain it Thank you

Mathematics
1 answer:
STALIN [3.7K]3 years ago
7 0

Answer:

2 week ago so you dont need so free point

Step-by-step explanation:

You might be interested in
Write an equation (a) in slope-intercept form and (b) in standard form for the line passing through (-3,5) and parallel to x + 4
Dmitry [639]

Answer:

  • \boxed{\sf Standard-form :x + 4y -17=0 }\\

  • \boxed{\sf Slope-intercept\ form :y =\dfrac{-1}{4}x +\dfrac{17}{4}}

Step-by-step explanation:

Here a equation of the line is given to us and we need to find out the equation of line which passes through the given point and parallel to the given line , the given equation is ,

\longrightarrow x + 4y = 7\\

Firstly convert it into <em>s</em><em>l</em><em>o</em><em>p</em><em>e</em><em> </em><em>i</em><em>n</em><em>t</em><em>e</em><em>r</em><em>c</em><em>e</em><em>p</em><em>t</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em> </em>of the line which is <u>y</u><u> </u><u>=</u><u> </u><u>m</u><u>x</u><u> </u><u>+</u><u> </u><u>x</u><u> </u>, as ;

\longrightarrow 4y = -x + 7  \\

\longrightarrow y =\dfrac{-x}{4}+\dfrac{7}{4}\\

On comparing it to <em>y</em><em> </em><em>=</em><em> </em><em>m</em><em>x</em><em> </em><em>+</em><em> </em><em>c</em><em> </em>, we have ,

\longrightarrow m =\dfrac{-1}{4}\\

\longrightarrow c =\dfrac{7}{4}\\

Now as we know that the <em>s</em><em>l</em><em>o</em><em>p</em><em>e</em><em> </em><em>o</em><em>f</em><em> </em><em>t</em><em>w</em><em>o</em><em> </em><em>p</em><em>a</em><em>r</em><em>a</em><em>l</em><em>l</em><em>e</em><em>l</em><em> </em><em>l</em><em>i</em><em>n</em><em>e</em><em>s</em><em> </em><em>i</em><em>s</em><em> </em><em>s</em><em>a</em><em>m</em><em>e</em><em> </em>. Therefore the slope of the parallel line will be ,

\longrightarrow m_{||)}=\dfrac{-1}{4}\\

Now we may use <em>p</em><em>o</em><em>i</em><em>n</em><em>t</em><em> </em><em>s</em><em>l</em><em>o</em><em>p</em><em>e</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em> </em>of the line as ,

\longrightarrow y - y_1 = m(x-x_1) \\

On substituting the respective values ,

\longrightarrow y - 5 =\dfrac{-1}{4}\{ x -(-3)\}\\

\longrightarrow y -5=\dfrac{-1}{4}(x+3)\\

\longrightarrow 4(y -5 ) =-1(x +3) \\

\longrightarrow 4y -20 = - x -3 \\

\longrightarrow x + 4y -20+3=0\\

\longrightarrow \underset{Standard \ Form }{\underbrace{\underline{\underline{ x + 4y -17=0}}}} \\

Again the equation can be rewritten as ,

\longrightarrow y - 5 = \dfrac{-1}{4}(x +3) \\

\longrightarrow y = \dfrac{-1}{4}x -\dfrac{3}{4}+5  \\

\longrightarrow y = \dfrac{-1}{4}x -\dfrac{20-3}{4}  \\

\longrightarrow \underset{Slope-Intercept\ form }{\underbrace{\underline{\underline{  y =\dfrac{-1}{4}x +\dfrac{17}{4}}}}}\\

6 0
2 years ago
Evaluate the iterated integral 2 0 2 x sin(y2) dy dx. SOLUTION If we try to evaluate the integral as it stands, we are faced wit
nignag [31]

Answer:

Step-by-step explanation:

Given that:

\int^2_0 \int^2_x \ sin (y^2) \ dy dx \\ \\ \text{Using backward equation; we have:} \\ \\  \int^2_0\int^2_0 sin(y^2) \ dy \ dx = \int \int_o \ sin(y^2) \ dA \\ \\  where; \\ \\  D= \Big\{ (x,y) | }0 \le x \le 2, x \le y \le 2 \Big\}

\text{Sketching this region; the alternative description of D is:} \\ D= \Big\{ (x,y) | }0 \le y \le 2, 0 \le x \le y \Big\}

\text{Now, above equation gives room for double integral  in  reverse order;}

\int^2_0 \int^2_0 \ sin (y^2) dy dx = \int \int _o \ sin (y^2) \ dA  \\ \\ = \int^2_o \int^y_o \ sin (y^2) \ dx \ dy \\ \\ = \int^2_o \Big [x sin (y^2) \Big] ^{x=y}_{x=o} \ dy  \\ \\=  \int^2_0 ( y -0) \ sin (y^2) \ dy  \\ \\ = \int^2_0 y \ sin (y^2) \ dy  \\ \\  y^2 = U \\ \\  2y \ dy = du  \\ \\ = \dfrac{1}{2} \int ^2 _ 0 \ sin (U) \ du  \\ \\ = - \dfrac{1}{2} \Big [cos  \ U \Big]^2_o \\ \\ =  - \dfrac{1}{2} \Big [cos  \ (y^2)  \Big]^2_o  \\ \\ =  - \dfrac{1}{2} cos  (4) + \dfrac{1}{2} cos (0) \\ \\

=  - \dfrac{1}{2} cos  (4) + \dfrac{1}{2} (1) \\ \\  = \dfrac{1}{2}\Big [1- cos (4) \Big] \\ \\  = \mathbf{0.82682}

5 0
3 years ago
Evaluate g (x) = 4- 3x when x = -3, 0, and 5
Nataliya [291]

Answer:

13, 4, -11

Step-by-step explanation:

g(-3) = 4-3(-3) = 4+9 = 13

g(0) = 4-3(0) =4-0 = 4

g(5) = 4-3(5) = 4-15 = -11

7 0
3 years ago
No links please chdudnvd
Alex_Xolod [135]
Its the third option y-9=-1/4(x+2) because the equation for point slope form is y-y1= m(x-x1) so because there is a negative 2 it is a positive 2. Remember a negative minus a negative is a positive. Hope this helped :)!
7 0
2 years ago
Read 2 more answers
Can someone please answer this for me and with solution and "Checking"( to see if your answer is correct) please.​
mamaluj [8]

Answer:

√9/√13=5

√10-3r=r

Step-by-step explanation:

this must be the answer

4 0
3 years ago
Other questions:
  • Find the sum of the first 30 terms in this geometric series -5 -4 -16/5
    11·1 answer
  • What is the tens digit in the product 3 times 9?
    9·1 answer
  • Chicago Pizza charges $10.49 for a medium 14" pepperoni pizza and NY Pizza charges $20.99 for an x-large 18" pepperoni pizza.
    13·1 answer
  • I really need someone to answer this please, I really need to pass this test:(.
    12·1 answer
  • I need help! Thanks!
    8·1 answer
  • What is the number four plus the number four?
    8·2 answers
  • (GIVING BRAINLIEST!!!!!!)
    5·1 answer
  • Find the indicated angle measures. Then justify each answer. <br><br>m angle 1​
    12·2 answers
  • Identify the following as Expression or Equation<br><br><br><br>i will give brainliest
    10·2 answers
  • What is 6 times 3/4 ?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!