a. 0.5 T
- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position
- The period T is the time the system takes to complete one oscillation
During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.
So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion

and solving for t we find

b. 1.25T
Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that
- the mass takes a time of 1 T to cover a distance of 4A
we can set the following proportion:

And by solving for t, we find

Answer:5
Explanation:
Given
speed of object 
radius of circle 
Force towards the center 
Work done is given by the dot product of Force and displacement
and we know know displacement of the object is along the circle which is perpendicular to the force acting therefore Work done will be zero


Given :
Current, I = 3.75 A .
Magnetic Field, 
To Find :
The distance from the wire.
Solution :
We know,

Hence, this is the required solution.
Answer:
-0.0047 rad/s²
335.103 seconds
99.18 seconds
Explanation:
= Final angular velocity
= Initial angular velocity = 1.5 ra/s
= Angular acceleration
= Angle of rotation = 40 rev
t = Time taken
Equation of rotational motion

Acceleration while slowing down is -0.0047 rad/s²

Time taken to slow down is 335.103 seconds

Solving the equation

The time required for it to complete the first 20 is 99.18 seconds as 539.11>335.103