The option is Work.
The product of charge and potential is equal to the energy. Adn, as we know work is related to energy as the capacity to do work.
Alos, because, Potential is given as, V = E/q
or E = Vq
Thus, t<span>he product of charge through, and potential across, an electrical device is:work
</span>
Hello!
Most ocean waves obtain their energy and motion from the wind.
Ocean waves are surface waves that move across the surface of the ocean. When wind touches the surface of the water, there is friction in the contact zone. This friction causes a drag effect, that makes wrinkles on the surface of the water. As the wrinkles get bigger, they transform into full-blown waves, and the taller the wave, the more energy it can extract from the wind, making them even bigger and to move longer distances.
Have a nice day!
Answer:
0.243 m/s
Explanation:
From law of conservation of motion,
mu+m'u' = V(m+m')................. Equation 1
Where m = mass of the first car, m' = mass of the second car, initial velocity of the first car, u' = initial velocity of the second car, V = Final velocity of both cars.
make V the subject of the equation
V = (mu+m'u')/(m+m')................. Equation 2
Given: m = 260000 kg, u = 0.32 m/s, m' = 52500 kg, u' = -0.14 m/s
Substitute into equation 2
V = (260000×0.32+52500×(-0.14))/(260000+52500)
V = (83200-7350)/312500
V = 75850/312500
V = 0.243 m/s
The answer is going to be leaves.
Here it is. *WARNING* VERY LONG ANSWER
________________________________________...
<span>11) If Galileo had dropped a 5.0 kg cannon ball to the ground from a height of 12 m, the change in PE of the cannon ball would have been product of mass(m),acceleration(g)and height(h) </span>
<span>The change in PE =mgh=5*9.8*12=588 J </span>
<span>______________________________________... </span>
<span>12.) The 2000 Belmont Stakes winner, Commendable, ran the horse race at an average speed = v = 15.98 m/s. </span>
<span>Commendable and jockey Pat Day had a combined mass =M= 550.0 kg, </span>
<span>Their KE as they crossed the line=(1/2)Mv^2 </span>
<span>Their KE as they crossed the line=0.5*550*(15.98)^2 </span>
<span>Their KE as they crossed the line is 70224.11 J </span>
<span>______________________________________... </span>
<span>13)Brittany is changing the tire of her car on a steep hill of height =H= 20.0 m </span>
<span>She trips and drops the spare tire of mass = m = 10.0 kg, </span>
<span>The tire rolls down the hill with an intial speed = u = 2.00 m/s. </span>
<span>The height of top of the next hill = h = 5.00 m </span>
<span>Initial total mechanical energy =PE+KE=mgH+(1/2)mu^2 </span>
<span>Initial total mechanical energy =mgH+(1/2)mu^2 </span>
<span>Suppose the final speed at the top of second hill is v </span>
<span>Final total mechanical energy =PE+KE=mgh+(1/2)mv^2 </span>
<span>As mechanical energy is conserved, </span>
<span>Final total mechanical energy =Initial total mechanical energy </span>
<span>mgh+(1/2)mv^2=mgH+(1/2)mu^2 </span>
<span>v = sq rt [u^2+2g(H-h)] </span>
<span>v = sq rt [4+2*9.8(20-5)] </span>
<span>v = sq rt 298 </span>
<span>v =17.2627 m/s </span>
<span>The speed of the tire at the top of the next hill is 17.2627 m/s </span>
<span>______________________________________... </span>
<span>14.) A Mexican jumping bean jumps with the aid of a small worm that lives inside the bean. </span>
<span>a.)The mass of bean = m = 2.0 g </span>
<span>Height up to which the been jumps = h = 1.0 cm from hand </span>
<span>Potential energy gained in reaching its highest point= mgh=1.96*10^-4 J or 1960 erg </span>
<span>b.) The speed as the bean lands back in the palm of your hand =v=sq rt2gh =sqrt 0.196 =0.4427 m/s or 44.27 cm/s </span>
<span>_____________________________ </span>
<span>15.) A 500.-kg horse is standing at the top of a muddy hill on a rainy day. The hill is 100.0 m long with a vertical drop of 30.0 m. The pig slips and begins to slide down the hill. </span>
<span>The pig's speed a the bottom of the hill = sq rt 2gh = sq rt 2*9.8*30 =sq rt 588 =24.249 m/s </span>
<span>__________________________________ </span>
<span>16.) While on the moon, the Apollo astronauts Neil Armstrong jumped up with an intitial speed 'u'of 1.51 m/s to a height 'h' of 0.700 m, </span>
<span>The gravitational acceleration he experienced = u^2/2h = 2.2801 /(2*0.7) = 1.629 m/s^2 </span>
<span>______________________________________... </span>
<span>EDIT </span>
<span>1.) A train is accelerating at a rate = a = 2.0 km/hr/s. </span>
<span>Acceleration </span>
<span>Initial velocity = u = 20 km/hr, </span>
<span>Velocity after 30 seconds = v = u + at </span>
<span>Velocity after 30 seconds = v = 20 km/hr + 2 (km/hr/s)*30s = </span>
<span>Velocity after 30 seconds = v = 20 km/hr + 60 km/hr = 80 km/ hr </span>
<span>Velocity after 30 seconds = v = 80 km/hr=22.22 m/s </span>
<span>_______________________________- </span>
<span>2.) A runner achieves a velocity of 11.1 m/s 9 s after he begins. </span>
<span>His acceleration = a =11.1/9=1.233 m/s^2 </span>
<span>Distance he covered = s = (1/2)at^2=49.95 m</span>