Answer:
(a) A = 
(b) 
(c) 
(d) 
Solution:
As per the question:
Radius of atom, r = 1.95
Now,
(a) For a simple cubic lattice, lattice constant A:
A = 2r
A = 
(b) For body centered cubic lattice:


(c) For face centered cubic lattice:


(d) For diamond lattice:


The main formula is given by Eb/nucleon = Eb/ mass of nucleid
as for <span>52He, the mass is 5
so by applying Einstein's formula Eb=DmC², Eb=</span><span>binding energy
</span><span>52He-----------> 2 x 11p + 3 x10n is the equation bilan
</span>so Dm=2 mp + (5-2)mn-mnucleus, mp=mass of proton=1.67 10^-27 kg
mn=mass of neutron=<span>1.67 10^-27 kg
</span><span>m nucleus= 5
Dm= 2x</span>1.67 10^-27 kg+ 3x<span>1.67 10^-27 kg-5= - 4.9 J
Eb= </span> - <span>4.9 J x c²= -4.9 x 9 .10^16= - 45 10^16 J
so the answer is Eb /nucleon = Eb/5= -9.10^16 J, but 1eV=1.6 . 10^-19 J
so </span><span>-9.10^16 J/ 1.6 10^-19= -5.625 10^35 eV
the final answer is </span><span>Eb /nucleon </span><span>= -5.625 x10^35 eV</span>
Angle α between the velocity of theelectron and the magnetic field of the wire will be 90 degree
Answer:
865.08 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 243 m/s
Height (h) of the cliff = 62 m
Horizontal distance (s) =?
Next, we shall determine the time taken for the cannon to get to the ground. This can be obtained as follow:
Height (h) of the cliff = 62 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
62 = ½ × 9.8 × t²
62 = 4.9 × t²
Divide both side by 4.9
t² = 62/4.9
Take the square root of both side.
t = √(62/4.9)
t = 3.56 s
Finally, we shall determine the horizontal distance travelled by the cannon ball as shown below:
Initial velocity (u) = 243 m/s
Time (t) = 3.56 s
Horizontal distance (s) =?
s = ut
s = 243 × 3.56 s
s = 865.08 m
Thus, the cannon ball will impact the ground 865.08 m from the base of the cliff.
N stands for Newton
2- upload the graph..