Answer:
0.661 s, 5.29 m
Explanation:
In the y direction:
Δy = 2.14 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(2.14 m) = (0 m/s) t + ½ (9.8 m/s²) t²
t = 0.661 s
In the x direction:
v₀ = 8 m/s
a = 0 m/s²
t = 0.661 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (8 m/s) (0.661 s) + ½ (0 m/s²) (0.661 s)²
Δx = 5.29 m
Round as needed.
In theory, yes. The 2 problems are the materials used for clinical thermometers, & the temperature capacity of the clinical thermometer. If anything, change the material & extend the measurement threshold. At that point, it wouldn´t be used for clinical garbage anymore.
Of the forces listed I think the force of him diving and sliding across the infield acted on the player.
I think so because the slowing down was a result of an action, and I don’t think that should count as An action when it is the result of an action. However, the act of diving head-first into second base and sliding across the infield are independent actions and will cause friction, which will act upon the player.
Answer:
Mercury:
.85
pea
Venus:
2.1
gumball
Earth:
2.2
gumball
Mars:
1.2
marble
Uranus:
9
grapefruit
Neptune:
8.6
softball
Explanation:
I have no clue if I'm right but hopefully, I am