Increasing its velocity will add to the kinetic energy more as the formula for kinetic energy is 0.5*m*v^2. (The speed will be squared making it greater)
Answer:
"8 units" is the appropriate answer.
Explanation:
According to the question,
Throughout equilibrium all particles are of equivalent intensity, and as such the integrated platform's total energy has been uniformly divided across all individuals.
Now,
The total energy will be:
= 
= 
The total number of particles will be:
= 
= 
hence,
Energy of each A particle or each B particle will be:
= 
= 
I'm guessing that you mean like this:
-- The ruler is held with zero at the bottom, and the centimeter markings
increase as you go up the ruler.
-- You place your fingers with the ruler and the zero mark between them.
-- The number where you catch the ruler is the distance it has fallen.
Then, all we have to find is the time it takes for the ruler to fall 11.3 cm .
Here's the formula for the distance an object falls from rest
in a certain time:
Distance = (1/2) (gravity) (time)²
On Earth, the acceleration of gravity is 9.8 m/s².
So we can write ...
11.2 cm = (1/2) (9.8 m/s²) (time)²
or
0.112 meter = (4.9 m/s²) (time)²
Divide each side
by 4.9 m/s² : (0.112 m) / (4.9 m/s²) = time²
(0.112 / 4.9) sec² = time²
Square root
each side: time = √(0.112/4.9 sec²)
= √ 0.5488 sec²
= 0.74 second (rounded)
The NUCLEUS is the center of the atom. it contains protons and NEUTRONS
protons have a POSITIVE charge
neutrons have a NEUTRAL charge
electrons have a NEGATIVE charge