Answer:
39.240 W
Explanation:
Let's start by calculating the work done by the engine. We can assume that it is the same work done by the weight of the object to bring it from 40m to the surface: as much energy it takes to bring it up, the same ammount it takes to bring it down. Said work is 
At this point we can simply apply the definition of power, that is
, to get the power of the engine is 
Explanation:
For example, when a drum is struck, the flexible skin (sometimes called a membrane) of the drum vibrates. The compression and expansion of the air on either side of the vibrating membrane produces differences in air pressure. The pressure differences generate a sound wave that propagates outward from the drum surface.
Pretty sure the answer is C. Screw: wheel and axle
The loss of matter is called the mass defect. The missing matter is converted into energy. You can actually calculate the amount of energy produced during a nuclear reaction with fairly simple equation developed by Albert Einstein; E = mc^2. In this equation, E is the amount of energy produced, m is the missing mass, or the mass defect, and c is the speed of light, which is a rather large number. The speed of light is squared, making that part of the equation a very large number that, even when multiplied by a small amount of mass, yields a large amount of energy.
Answer:
COMPLETE QUESTION
A spring stretches by 0.018 m when a 2.8-kg object is suspended from its end. How much mass should be attached to this spring so that its frequency of vibration is f = 3.0 Hz?
Explanation:
Given that,
Extension of spring
x = 0.0208m
Mass attached m = 3.39kg
Additional mass to have a frequency f
Let the additional mass be m
Using Hooke's law
F= kx
Where F = W = mg = 3.39 ×9.81
F = 33.26N
Then,
F = kx
k = F/x
k = 33.26/0.0208
k = 1598.84 N/m
The frequency is given as
f = ½π√k/m
Make m subject of formula
f² = ¼π² •(k/m
4π²f² = k/m
Then, m4π²f² = k
So, m = k/(4π²f²)
So, this is the general formula,
Then let use the frequency above
f = 3Hz
m = 1598.84/(4×π²×3²)
m = 4.5 kg