Answer:
8.44 m/s.
Explanation:
Change in Potential Energy = Mass x Acceleration From Gravity x H2 - H1
Kinetic Energy = 1/2 (mass) x [(v2)^2 - v1^2]
g * h = 1/2 * v^2
(9.8) x (2.27) = 1/2 * (v)^2
v^2 = 2[(9.8) x (2.27)]
v = 6.67 m/s
g * delta h = 1/2 * delta v^2
(9.8) x (2.27 - 0.903) = 1/2 * [(v2)^2 - (6.67)^2]
v2^2 = 71.2821
v2 = 8.44 m/s
Answer:
a. 1.64 m/s²
Explanation:
Centripetal acceleration is the square of tangential velocity divided by the radius.
a = v²/r
First, convert km/h to m/s.
30.0 km/h (1000 m/km) (1 h / 3600 s) = 8.33 m/s
Find the acceleration.
a = (8.33 m/s)² / (42.4 m)
a = 1.64 m/s²
Answer:
r = 102.43 m
Explanation:
Newton's second law for this case is
F = ma
Where the acceleration is centripetal
a = v² / r
r = v² / a
They indicate that the radial acceleration is 8.45 g
r = v² / 8.45 g.
r = 92.1² / 8.45 9.8
r = 102.43 m
Answer:
according to newtons second law of motion,
Force = mass * acceleration
The acceleration of the body is directly proportional to the net force acting on the body and inversely proportional to the mass of the body.
I. e mass and acceleration are directly proportional to each other.
Answer:
(E)56.0 m/s
Explanation:
Height =h=-160 m
Because the wallet moving in downward direction
Time=t=7 s
Final speed of wallet=v=0
We have to find the speed of helicopter ascending at the moment when the passenger let go of the wallet.
Where
Substitute the values
Option (E) is true