<h2>The frequency depends upon the source energy of electromagnetic waves</h2>
Explanation:
The energy of electromagnetic wave is
E = h ν
E is the energy of source emitting the waves
here h is Plank's constant
and ν is used for the frequency of the electromagnetic wave
Thus the frequency of wave depends upon the energy of electromagnetic source . Because h is constant .
Answer:
0.25 cm³.
Explanation:
We shall apply Boyle's law to find the solution . According to it
PV = constant where P is pressure and V is volume of the gas.
P₁ V₁ = P₂V₂
1 x .5 = 2 x V₂
V₂ = 0.25 cm³.
Answer:
statement 1 with answer C
statement 2 with answer F
statement 3 with answer B
Statement 1 with E
Statement 2 with A
Statement 3 with D
Explanation:
In this exercise you are asked to relate each with the answers
In general, in the optics diagram,
* Ray 1 is a horizontal ray that after stopping by the optical system goes to the focal point
* Ray 2 is a ray that passes through the intercept point between the optical axis and the system and does not deviate
* Ray 3 is a ray that passes through the focal length and after passing the optical system, it comes out horizontally.
With these statements, let's review the answers
statement 1 with answer C
statement 2 with answer F
statement 3 with answer B
Statement 1 with E
Statement 2 with A
Statement 3 with D
Answer:
t = (ti)ln(Ai/At)/ln(2)
t = 14ln(16)/ln(2)
Solving for t
t = 14×4 = 56 seconds
Explanation:
Let Ai represent the initial amount and At represent the final amount of beryllium-11 remaining after time t
At = Ai/2^n ..... 1
Where n is the number of half-life that have passed.
n = t/half-life
Half life = 14
n = t/14
At = Ai/2^(t/14)
From equation 1.
2^n = Ai/At
Taking the natural logarithm of both sides;
nln(2) = ln(Ai/At)
n = ln(Ai/At)/ln(2)
Since n = t/14
t/14 = ln(Ai/At)/ln(2)
t = 14ln(Ai/At)/ln(2)
Ai = 800
At = 50
t = 14ln(800/50)/ln(2)
t = 14ln(16)/ln(2)
Solving for t
t = 14×4 = 56 seconds
Let half life = ti
t = (ti)ln(Ai/At)/ln(2)