1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vfiekz [6]
3 years ago
11

Can someone please help me

Mathematics
2 answers:
meriva3 years ago
7 0

Answer:

215.4

Step-by-step explanation:

first u do 223.4 - 221.8 to find how much we losses a week which is 1.6 then u do 218.6 - 1.6 = 217 (week 5) then 217 - 1.6 = 215.4 (week 6)

olga55 [171]3 years ago
5 0

Answer:

a) y = 1.6x .

b) 197.8 .

Step-by-step explanation:

a) y ( Weight lbs. ), x ( Week ), Constant rate ( 1.6 ) .

b) 1.6 x 16 = 25.6 .

Hope this helps !

You might be interested in
What's the surface area ratio &amp; the volume ratio??<br><br> please help me ASAP!!
Ulleksa [173]

Answer:

Step-by-step explanation:

Volumes of two spheres A and B = 648 cm³ and 1029 cm³

Things to remember:

1). Scale factor of two objects = \frac{r_1}{r_2} [r_1 and r_2 are the radii of two circles]

2). Area scale factor = \frac{(r_1)^2}{(r_2)^2}

3). Volume scale factor = \frac{(r_1)^3}{(r_2)^3}

Volume scale factor Or Volume ratio = \frac{V_A}{V_B}

                         \frac{(r_1)^3}{(r_2)^3}= \frac{648}{1029}

                         \frac{r_1}{r_2}=\sqrt[3]{\frac{648}{1029} }

                         \frac{r_1}{r_2}=\frac{6(\sqrt[3]{3})}{7(\sqrt[3]{3})}

                        \frac{r_1}{r_2}=\frac{6}{7}

Therefore, scale factor = \frac{r_1}{r_2}=\frac{6}{7}

                                      ≈ 6 : 7

Area scale factor Or area ratio = (\frac{r_1}{r_2})^2=(\frac{6}{7})^2

                                                   = \frac{36}{49}

                                                   ≈ 36 : 49

Volume scale factor or Volume ratio = \frac{648}{1029}

                                                             = \frac{216}{343}

                                                             ≈ 216 : 343

4 0
3 years ago
6.4−2.4÷0.1= what (Enter your answer in as a decimal please.)
mamaluj [8]
The answer would be -17.6.

Simplify 2.4 divided by 0.1 to 24 ( 6.4 - 24 )

Simplify ( -17.6 ).

3 0
3 years ago
Bruhhhh helppppppp meww​
Neporo4naja [7]

Answer:

B

Step-by-step explanation:

Given

V = \frac{Bh}{3}

Substitute the given values for B and h into the formula

V = \frac{15(28)}{3} = \frac{420}{3} = 140 in³

4 0
4 years ago
Can someone please answer. There is one problem. There's a picture. Thank you!
lesya [120]
Hello,

False y∈[-1,1]
5 0
3 years ago
A company services home air conditioners. It is known that times for service calls follow a normal distribution with a mean of 7
SCORPION-xisa [38]

Answer:

The probability that exactly eight of them take more than 93.6 minutes is 5.6015 \times 10^{-6} .

Step-by-step explanation:

We are given that it is known that times for service calls follow a normal distribution with a mean of 75 minutes and a standard deviation of 15 minutes.

A random sample of twelve service calls is taken.

So, firstly we will find the probability that service calls take more than 93.6 minutes.

Let X = <u><em>times for service calls.</em></u>

So, X ~ Normal(\mu=75,\sigma^{2} =15^{2})

The z-score probability distribution for the normal distribution is given by;

                              Z  =  \frac{X-\mu}{\sigma}  ~ N(0,1)

where, \mu = mean time = 75 minutes

           \sigma = standard deviation = 15 minutes

Now, the probability that service calls take more than 93.6 minutes is given by = P(X > 93.6 minutes)

       P(X > 93.6 min) = P( \frac{X-\mu}{\sigma} > \frac{93.6-75}{15} ) = P(Z > 1.24) = 1 - P(Z \leq 1.24)

                                                                = 1 - 0.8925 = <u>0.1075</u>

The above probability is calculated by looking at the value of x = 1.24 in the z table which has an area of 0.8925.

Now, we will use the binomial distribution to find the probability that exactly eight of them take more than 93.6 minutes, that is;

P(Y = y) = \binom{n}{r}\times p^{r} \times (1-p)^{n-r} ; y = 0,1,2,3,.........

where, n = number of trials (samples) taken = 12 service calls

            r = number of success = exactly 8

            p = probability of success which in our question is probability that

                   it takes more than 93.6 minutes, i.e. p = 0.1075.

Let Y = <u><em>Number of service calls which takes more than 93.6 minutes</em></u>

So, Y ~ Binom(n = 12, p = 0.1075)

Now, the probability that exactly eight of them take more than 93.6 minutes is given by = P(Y = 8)

               P(Y = 8)  =  \binom{12}{8}\times 0.1075^{8} \times (1-0.1075)^{12-8}

                             =  495 \times 0.1075^{8} \times 0.8925^{4}

                             =  5.6015 \times 10^{-6} .

6 0
4 years ago
Other questions:
  • AC = 64,<br> AB = 7x + 8, and<br> BC = 3x + 6,<br> Find BC.
    11·1 answer
  • What is the number name for 3,152,308
    10·2 answers
  • Which equation will equal a rational number
    7·1 answer
  • Please Simplify 3x+2/7
    11·1 answer
  • Select all values that make the equation true.
    9·1 answer
  • Help please. i am desperate
    9·1 answer
  • Need answers quickly!
    15·1 answer
  • Your high school freshman class consists of 528 students. In recent years, only 5 out of 12 students actually
    5·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%5Clarge%5Cbegin%7Bbmatrix%7D%20%5Cbegin%7Barray%7D%20%7B%20l%20l%20%7D%20%7B%202%20%7D%20%
    11·1 answer
  • How do I do this??????? 2/3x-(1/2x+1)<br>btw need it simplified
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!