The force exerted on the box is 56 N
Explanation:
The work done by a force on an object is given by

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the direction of the force and of the displacement
For the box in this problem, we have:
W = 2240 J is the work done
d = 40 m is the displacement of the box
Assuming that the force is parallel to the displacement, 
Solving the equation for F, we find the force exerted on the box:

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:
v = 57.2 m/s
Explanation:
The average velocity of the train can be defined as the total distance covered by the train divided by the time taken by the train to cover that distance. Therefore, we will use the following formula to find the average velocity of the train:
v = s/t
where,
s = distance covered = 460 km = (460 km)(1000 m/1 km) = 4.6 x 10⁵ m
t = time taken to cover the distance = 2 h 14 min
Now, we convert it into minutes:
t = (2 h)(60 min/1 h) + 14 min
t = 120 min + 14 min = (134 min)(60 s/1 min)
t = 8040 s
Therefore, the value of velocity will be:
v = (4.6 x 10⁵ m)/8040 s
<u>v = 57.2 m/s</u>
Answer:
Explanation:
q = 2e = 3.2 x 10^-19 C
mass, m = 6.68 x 10^-27 kg
Kinetic energy, K = 22 MeV
Current, i = 0.27 micro Ampere = 0.27 x 10^-6 A
(a) time, t = 2.8 s
Let N be the alpha particles strike the surface.
N x 2e = q
N x 3.2 x 10^-19 = i t
N x 3.2 x 10^-19 = 0.27 x 10^-6 x 2.8
N = 2.36 x 10^12
(b) Length, L = 16 cm = 0.16 m
Let N be the alpha particles
K = 0.5 x mv²
22 x 1.6 x 10^-13 = 0.5 x 6.68 x 10^-27 x v²
v² = 1.054 x 10^15
v = 3.25 x 10^7 m/s
So, N x 2e = i x t
N x 2e = i x L / v
N x 3.2 x 10^-19 = 2.7 x 10^-7 x 0.16 / (3.25 x 10^7)
N = 4153.85
(c) Us ethe conservation of energy
Kinetic energy = Potential energy
K = q x V
22 x 1.6 x 10^-13 = 2 x 1.5 x 10^-19 x V
V = 1.17 x 10^7 V
Answer:
hypothesis , hope it helps
Explanation:
Yep that's correct
And transverse waves move perpendicular to the direction of energy transport