Answer:
In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component
However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy
Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system
The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Explanation:
Answer:
There are two different types of crust: thin oceanic crust that underlies the ocean basins, and thicker continental crust that underlies the continents. These two different types of crust are made up of different types of rock.
Explanation:
There ya go !
:) hoping this helped ya out
Answer:

Explanation:
As we know,
=》Force = Mass × Acceleration
=》45 N = 0.75 × Acceleration
=》Acceleration = 45 ÷ 0.75
=》Acceleration = 60
hence, the Acceleration of the ball would be. 60 meters per second square

<span>The answer here is positive space. Within a composition, any given object occupies positive space, whereas white space around this, or simply areas of blank space that are not being somehow used, is defined as negative space. Hopefully this clears up your question!</span>
Answer:
5.9 x 10⁻⁷m
Explanation:
Given parameters:
Frequency = 5.085 x 10¹⁴Hz
Speed of light = 3.0 x 10⁸m/s
Unknown:
Wavelength of the orange light = ?
Solution:
The wavelength can be derived using the expression below;
wavelength =
v is the speed of light
f is the frequency
wavelength =
= 5.9 x 10⁻⁷m