consider the motion of projectile A in vertical direction :
v₀ = initial velocity of projectile A in vertical direction = 0 m/s (since the projectile was launched horizontally)
a = acceleration of the projectile = g = acceleration due to gravity = 9.8 m/s²
t = time of travel for projectile A = 3.0 seconds
Y = vertical displacement of projectile A = height of the cliff = h = ?
using the kinematics equation along the vertical direction as
Y = v₀ t + (0.5) a t²
h = (0) (3.0) + (0.5) (9.8) (3.0)²
h = 44.1 m
Reflecting telescope. Reflecting telescopes tend to have larger objective (due to the use of mirrors, mirrors are a lot cheaper than lenses) and have the ability to collect more light, while refracting telescopes are limited to objective lenses with smaller diameters due to their structural limitations (chromatic abbreviation, for example). Therefore, reflecting telescopes should be better at viewing faint distant stars
Mass of the bird(m) = 150 g = 0.15 kg
Speed (v) = 10 m/s
Kinetic Energy =
= 7.5 J
Altitude (h) = 15 m
Gravitational Potential Energy = (0.15)(9.81)(15) = 22.0725 J
Mechanical Energy = Kinetic Energy + Potential Energy = 7.5 + 22.0725
= 29.5725 J
I think metal, steel and copper.
Answer:
Block A
Explanation:
Block A will float higher in the water compared to the second Block.
The density of water is 1g/cm³.
According to the principle of floatation "an object that floats in a liquid will displace equal amount of fluid to the weight of the object".
A body will become more submerged in water if it has more density because density is the mass per volume of body.
An object with a higher density than another will sink in the liquid of the one with lesser density.
- Object A has lesser density and will float higher up and displace very little water.
- Object B has higher density and will be more submerged.