Answer:
15
Step-by-step explanation:
jdjeishebvejeisik2behe
Usando el teorema de altura El teorema de altura relaciona la altura (h) de un triángulo rectángulo (ver figura) y los catetos de dos triángulos que son semejantes al anterior ABC, al trazar la altura (h) sobre la hipotenusa. De manera que e<span>n todo </span>triángulo rectángulo, la altura (h<span>) relativa a la </span>hipotenusa<span> es la </span>media geométrica<span> de las dos proyecciones de los </span>catetos<span> sobre la </span>hipotenusa<span> (</span>n<span> y </span>m<span>). Es decir, se cumple que:
</span>

Dado que el problema establece <span>construir un segmento cuya longitud sea media proporcional entre dos segmentos de 4 y 9 cm, entonces, digamos que n = 4cm y m = 9cm tenmos que:
</span>

De donde:
¿Cómo se podria construir si los segmentos son de a cm y b cm?
Si los segmentos son de a y b cm entonces a y b son parámetros que pueden tomar cualquier valor positivo siempre que se cumpla que:

Answer:
1899
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 3234
Standard deviation = 871
Percentage of newborns who weighed between 1492 grams and 4976 grams:
1492 = 3234 - 2*871
So 1492 is two standard deviations below the mean.
4976 = 3234 + 2*871
So 4976 is two standard deviations above the mean.
By the Empirical Rule, 95% of newborns weighed between 1492 grams and 4976 grams.
Out of 1999:
0.95*1999 = 1899
So the answer is 1899
26*5 is 130
He'll have ten left over if each student in year 11 has one :) Hope this helps!