Answer:
Original temperature (T1) = - 37.16°C
Explanation:
Given:
Gas pressure (P1) = 2.75 bar
Temperature (T2) = - 20°C
Gas pressure (P2) = 1.48 bar
Find:
Original temperature (T1)
Computation:
Using Gay-Lussac's Law
⇒ P1 / T1 = P2 / T2
⇒ 2.75 / T1 = 1.48 / (-20)
⇒ T1 = (2.75)(-20) / 1.48
⇒ T1 = -55 / 1.48
⇒ T1 = - 37.16°C
Original temperature (T1) = - 37.16°C
Hyperglycemia is when blood sugar levels are always higher, only happens when insulin doesn’t respond properly. Without insulin glucose can’t get into cells and so it builds up in the bloodstream.
<u>Answer:</u> The correct IUPAC name of the alkane is 4-ethyl-3-methylheptane
<u>Explanation:</u>
The IUPAC nomenclature of alkanes are given as follows:
- Select the longest possible carbon chain.
- For the number of carbon atom, we add prefix as 'meth' for 1, 'eth' for 2, 'prop' for 3, 'but' for 4, 'pent' for 5, 'hex' for 6, 'sept' for 7, 'oct' for 8, 'nona' for 9 and 'deca' for 10.
- A suffix '-ane' is added at the end of the name.
- If two of more similar alkyl groups are present, then the words 'di', 'tri' 'tetra' and so on are used to specify the number of times these alkyl groups appear in the chain.
We are given:
An alkane having chemical name as 3-methyl-4-n-propylhexane. This will not be the correct name of the alkane because the longest possible carbon chain has 7 Carbon atoms, not 6 carbon atoms
The image of the given alkane is shown in the image below.
Hence, the correct IUPAC name of the alkane is 4-ethyl-3-methylheptane
Answer:
Al(NO₃)₃ > KI > HF > CH₃OH
Explanation:
The electrical conductivities of the solutions will depend on the concentration of ions in solution.
Al(NO₃)₃ solution contains 0.1 M of Al³⁺ ions and 0.3 M of NO₃⁻ ions
KI solution contains 0.1 M of K⁺ ions and 0.1 M of I⁻ ions
HF solution contains less than 0.1 M of H⁺ ions and less then 0.1 M of F⁻ ions, because the HF acid will not dissociate completely
CH₃OH practically it does not dissociate, so in the solution will not be electrical conductive (comparative with the other solutions)
The solutions in order of decreasing intensity of the bulb are ranked as following:
Al(NO₃)₃ > KI > HF > CH₃OH