Answer:
Acid/String Electrolyte
Explanation:
Litmus paper turning red means it is an acidic solution. A pH of more than 7 is Base while pH of less than 7 is an acid. Since the pH is 2, less than 7, it s is an acid. Since it has a high electrical conductivity, it must be a strong Electrolyte.
Answer:
Metal
Explanation:
Lithium (Li), chemical element of Group 1 (Ia) in the periodic table, the alkali metal group, lightest of the solid elements. The metal itself—which is soft, white, and lustrous—and several of its alloys and compounds are produced on an industrial scale.
Atomic number: 3
Atomic weight: 6.941
The answer is "Incidents"
Answer:
It becomes a positive ion and its radius decreases
Explanation:
As per the Octet rule, Barium has 2 electrons in its outermost shell. When it loses the two electron it gains two positive charge i.e Ba2+. As the barium loses the two electron from its outermost shell, the outermost shell becomes vacant and thus is no more considered as a part of atomic geometry of the barium atom and since the outermost shell is considered negligible the radius of barium atom reduces automatically.
Answer:
The solution is always homogeneous mixture and transparent through which the light can travel. The mixture of water and sugar is a solution because sugar is soluble in water and form homogeneous mixture while the sand can not dissolve in water and sand particles scatter the light.
Explanation:
Solution:
"The solution is always homogeneous mixture and transparent through which the light can travel"
The mixture of water and sugar is a solution because sugar is soluble in water and form homogeneous mixture. The solubility of sugar is high as compared to the sand in water because the negative and positive ends of sucrose easily dissolve into the polar solvent i.e, water
Suspension:
"Suspension is the heterogeneous mixture, in which the solute particles settle down but does not dissolve"
The mixture of water and sand is suspension. The sand can not dissolve in water because it is mostly consist of quartz. The nonpolar covalent bonds of sand are too strong and cannot be break by water molecules.