Answer:
1) correct
2) incorrect
3) correct
4)incorrect
Explanation:
1) A Lewis acid is a substance that accepts a nonbonding pair of electrons.
A Bronsted-Lowry acid is a substance that donates a proton H⁺
Since the donation of a proton involves the acceptance of a pair of electrons, every Bronsted-Lowry acid is also a Lewis acid.
2)A Lewis acid not necessarily needs to have a proton to be donated.
3) Conjugated acids of weak bases are strong acids and conjugated acids of strong bases are weak acids.
4)K⁺ comes from a strong base, therefore is does not have an acidic behaviour.
Answer:
Explanation:
lithium: lithium is very soft, silvery metal. melting point is 180.54°C and boiling point is 1,335°C. it's density is 0.534 grams per cu.cm. oxygen: oxygen is colourless , odorless , tasteless gas
Answer:
Check explanation
Explanation:
From the question, the parameters given are 64.7g of benzene,C6H6; a starting temperature of 41.9°C and bringing it to 33.2°C.
Molar mass of benzene,C6H6= 78.11236 g/mol.
Things to know: heat capacity of benzene, C6H6= 1.63 J/g.K, the heat of fusion = 9.87 kj/mol.
STEP ONE(1): ENERGY USED IN MELTING BENZENE SOLID.
Using the formula below;
Energy used in melting the solid(in JOULES) = (mass of benzene/molar mass of benzene) × heat of Fusion.
=(64.7 g of C6H6/ 78.11236(g per mol) of C6H6) × 9.87 kJ per mol.
= 8.175 J.
= 0.008175 kJ.
STEP TWO (2): ENERGY OF HEATING THE LIQUID.
It can be calculated from the formula below;
Energy= heat capacity (J/g.K) × mass of benzene× (∆T).
= 1.63 J/g.K × 64.7 × (41.9-33.2).
= 917.5J.
= 0.9175 kJ.
Energy required to boil benzene= Energy required to melt the bezene + energy required for boiling.
= 0.008175+ 0.9175.
= 0.93kJ
Approximately, 1 kJ
Answer:
The similarity is that Elements and Compunds exist in stable form because of the bonds formed between their atoms. The difference is that an element is a material that consists of a single type of atom and a compound consists of two or more types of elements held together by covalent or ionic bonds.
Explanation: Google