Answer:
Oh, you need to get the blue dots, and move them to the table or graph to plot them!
Hope that makes sense!
Hello!
<span>
You'll need to react
7,5 moles of Sodium with sulfuric acid to produce 3.75 moles of sodium sulfate
</span>
First of all, you need to balance the reaction. The balanced reaction is shown below (ensuring that the Law of Conservation of Mass is met on both sides):
2Na + H₂SO₄ → Na₂SO₄ + H₂
Now, all that you have to do is to use molar equivalences in this reaction applying the coefficients to calculate the moles of Sodium that you'll need:
Have a nice day!
Answer:
U= 238g/mol
U2O5= 556g/mol
Explanation:
Since U= 238
O=16
U3O5= 2(238)+3(16)=556g/mol
The arrangement of the solutions based on their absorption from highest frequency to lowest frequency :
b.
> c.
> a.NaCl
<h3>What is absorption frequency?</h3>
- The frequency of the molecular vibration that led to the absorption is the same as the absorption frequency of a basic IR absorption band.
- In a way, an emission spectrum is the opposite of an absorption spectrum.
- The discrepancies in the energy levels of each chemical element's orbitals correspond to absorption lines for each chemical element at various particular wavelengths.
- Therefore, it is possible to identify the constituents in a gas or liquid using its absorption spectrum.
- Absorption spectroscopy is most frequently used to measure infrared, atomic, visible, ultraviolet (UV), and x-ray waves.
Learn more about Absorption frequency here:
brainly.com/question/5032775
#SPJ4
The empirical formula is N₂O₅.
The empirical formula is the <em>simplest whole-number ratio of atoms</em> in a compound.
The ratio of atoms is the same as the ratio of moles, so our job is to calculate the <em>molar ratio of N:O</em>.
I like to summarize the calculations in a table.
<u>Element</u> <u>Moles</u> <u>Ratio¹ </u> <u> ×2² </u> <u>Integers</u>³
N 1.85 1 2 2
O 4.63 2.503 5.005 5
¹To get the molar ratio, you divide each number of moles by the smallest number (1.85).
²Multiply these values by a number (2) that makes the numbers in the ratio close to integers.
³Round off the number in the ratio to integers (2 and 5).
The empirical formula is N₂O₅.