Answer:
Potential energy
Explanation:
The thrown baseball is converting from kinetic energy into potential energy. When it finally stops at a particular height, it attains its maximum potential energy at the position or point.
- Potential energy is the energy at rest of body.
- Kinetic energy is the energy due to the motion of body.
The more a body speeds, the higher its kinetic energy attained.
As a body comes to rest, at a height, it attains potential energy.
The body during flight decreases in kinetic energy but increases its potential energy due to gravity pulling it to rest.
The answer is c. number of protons and d. atomic number. The proton number can identify an element. And also the atomic number is equal to the number of protons.
Answer:
Equation: - 2Li + H2O = Li2O + H2 Uncoated lithium metal reacts with water to form a colorless lithium hydroxide solution and hydrogen gas.
Explanation:
Answer:

Explanation:
Hess's Law of Constant Heat Summation states that if a chemical equation can be written as the sum of several other chemical equations, the enthalpy change of the first chemical equation is equal to the sum of the enthalpy changes of the other chemical equations. Thus, the reaction that involves the conversion of reactant A to B, for example, has the same enthalpy change even if you convert A to C, before converting it to B. Regardless of how many steps it takes for the reactant to be converted to the product, the enthalpy change of the overall reaction is constant.
With Hess's Law in mind, let's see how A can be converted to 2C +E.
(Δ
) -----(1)
Since we have 2B, multiply the whole of II. by 2:
(2Δ
) -----(2)
This step converts all the B intermediates to 2C +2D. This means that the overall reaction at this stage is
.
Reversing III. gives us a negative enthalpy change as such:
(-Δ
) -----(3)
This step converts all the D intermediates formed from step (2) to E. This results in the overall equation of
, which is also the equation of interest.
Adding all three together:
(
)
Thus, the first option is the correct answer.
Supplementary:
To learn more about Hess's Law, do check out: brainly.com/question/26491956
Answer:
464.1 J absorbed.
Explanation:
Given data:
Specific heat of zinc = 0.39 J/g°C
Mass of zinc = 34 g
Temperature changes = 22°C to 57°C
Energy absorbed or released = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 57°C - 22°C
ΔT = 35°C
Q = m.c. ΔT
Q = 34 g. 0.39 J/g°C. 35°C
Q = 464.1 J