5x-15-2x=6
3x=21
x=7
Therefore, x must equal 7.
It would have a variable, and/or coefficients and sometimes constants
Answer:
2,3,4
Step-by-step explanation:
hope this helps=D
Answer:
Step-by-step explanation:
The first differences of the sequence are ...
- 5-2 = 3
- 10-5 = 5
- 17-10 = 7
- 26-17 = 9
- 37-26 = 11
Second differences are ...
- 5 -3 = 2
- 7 -5 = 2
- 9 -7 = 2
- 11 -9 = 2
The second differences are constant, so the sequence can be described by a second-degree polynomial.
We can write and solve three equations for the coefficients of the polynomial. Let's define the polynomial for the sequence as ...
f(n) = an^2 + bn + c
Then the first three terms of the sequence are ...
- f(1) = 2 = a·1^2 + b·1 + c
- f(2) = 5 = a·2^2 +b·2 + c
- f(3) = 10 = a·3^2 +b·3 +c
Subtracting the first equation from the other two gives ...
3a +b = 3
8a +2b = 8
Subtracting the first of these from half the second gives ...
(4a +b) -(3a +b) = (4) -(3)
a = 1 . . . . . simplify
Substituting into the first of the 2-term equations, we get ...
3·1 +b = 3
b = 0
And substituting the values for a and b into the equation for f(1), we have ...
1·1 + 0 + c = 2
c = 1
So, the formula for the sequence is ...
f(n) = n^2 + 1
__
The 20th term is f(20):
f(20) = 20^2 +1 = 401
_____
<em>Comment on the solution</em>
It looks like this matches the solution of the "worked example" on your problem page.
The quick way to do this is to multiply the bill by 1, mult. it again by 0.18, and then add the two results together.
Better and faster: Mult. the bill amount ($42.75) by 1.18:
1.18($42.75) = $50.45 (answer)