Answer:
Answer:
D) by using military force.
Explanation:
Typically, people like Mussolini and Stalin gain popularity in trying times by promising a type of well-being to a group or nation of stricken people, in which they gain huge amounts of popularity at once. Typically they are then elected to some seat of power, in which, with popularity and most likely the military on their side, they would overthrow the current government. The next step taken is to suppress any opposition or even those who don't fully support the party. This can be given out in two ways, which is through force (especially opposition), or providing benefits to those who are in the party (to draw those who are not exactly supporting to support for the benefits).
With "popular" support, as well as military control, the overthrow is complete, and the group is established in power.
Hello.
The answer is: D. wavelength
This is correct because frequency x wavelength = speed
Have a nice day
Answer:

Explanation:
As we know that magnetic field due to torroid is given as

this is approximately constant magnetic field along the axis of the torroid
now the flux linked with one coil of the torroid is given as


now total flux of N number of coils is given as

now we know that self inductance is the property of coil in which flux of the coil will link with the current in the coil
So we know that


Answer:
1.02 m/s²
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
Acceleration can simply be defined as the change of velocity with time. Mathematically, it can be expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
a = (v – u) / t
a = (6.6 – 0) / 6.5
a = 6.6 / 6.5
a = 1.02 m/s²
Therefore, the acceleration of the car is 1.02 m/s²
The particles of the medium (slinky in this case) move up and down (choice #2) in a transverse wave scenario.
This is the defining characteristic of transverse waves, like particles on the surface of water while a wave travels on it, or like particles in a slack rope when someone sends a wave through by giving it a jolt.
The other kind of waves is longitudinal, where the particles of the medium move "left-and-right" along the direction of the wave propagation. In the case of the slinky, this would be achieved by giving a tensioned slinky an "inward" jolt. You would see that such a jolt would give rise to a longitudinal wave traveling along the length of the tensioned slinky. Another example of longitudinal waves are sound waves.