In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.
The equation that defines the linear moment is given by

where,
m=Total mass
Mass of Object
Velocity before throwing
Final Velocity
Velocity of Object
Our values are:

Solving to find the final speed, after throwing the object we have

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.
That way during each section the equations should be modified depending on the previous one, let's start:
A) 



B) 



C) 



Therefore the final velocity of astronaut is 3.63m/s
Answer:
0.799 m/s if air resistance is negligible.
Explanation:
For how long is the ball in the air?
Acceleration is constant. The change in the ball's height
depends on the square of the time:
,
where
is the change in the ball's height.
is the acceleration due to gravity.
is the time for which the ball is in the air.
is the initial vertical velocity of the ball.
- The height of the ball decreases, so this value should be the opposite of the height of the table relative to the ground.
. - Gravity pulls objects toward the earth, so
is also negative.
near the surface of the earth. - Assume that the table is flat. The vertical velocity of the ball will be zero until it falls off the edge. As a result,
.
Solve for
.
;
;
;
.
What's the initial horizontal velocity of the ball?
- Horizontal displacement of the ball:
; - Time taken:

Assume that air resistance is negligible. Only gravity is acting on the ball when it falls from the tabletop. The horizontal velocity of the ball will not change while the ball is in the air. In other words, the ball will move away from the table at the same speed at which it rolls towards the edge.
.
Both values from the question come with 3 significant figures. Keep more significant figures than that during the calculation and round the final result to the same number of significant figures.
Answer: 91.4 J
Explanation:
Kinetic energy is the energy possessed by a body due to virtue of its motion.
K.E. = 0.5 m v²
Mass of the continent is given, m = 1.819 × 10²¹ kg
Side of the block of continent, s = 4150 km = 4150000 m
Depth of the block of continent, d = 38 km = 38000 m
(Mass = density × volume
m = 2780 kg/m³× (4150 × 10³ m)²× 38 × 10³ m = 1.819 × 10²¹ kg)
The continent is moving at the rate of, v = 1 cm /year = 0.01 m / 31556926 s = 3.17 × 10⁻¹⁰ m/s
⇒ K.E. = 0.5 × 1.819 × 10²¹ kg × (3.17 × 10⁻¹⁰ m/s)²= 91.4 J
Hence, mass of the continent has 91.4 J of kinetic energy.
Answer:
the total cross-sectional area of the capillaries is greater than the total cross-sectional area of the arteries or any other part of the circulatory system.
Explanation:
Blood velocity is not the same in all areas. In the capillaries it is where there is less speed, while in arteries and veins it is quite similar. This is due to the cross-sectional area of each of the vessels. It is a mistake to think of a vein, artery or capillary individually. We have to put them all together to see that the total area of the capillaries is 100 times larger than that of the arteries or veins. Blood flowing through arteries or veins is going faster because there is less area.
Blood velocity is inversely proportional to each of the areas of its territories. The greater the area, the lower the speed.
For the cement bag we can say as per its force diagram we will have

here we will have


now we will have

now plug in all data


so the pulling force will be 295 N